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Combinatorial allocation involves assigning bundles of items to agents when the use of money is not allowed. Course
allocation is one common application of combinatorial allocation, in which the bundles are schedules of courses and the
assignees are students. Existing mechanisms used in practice have been shown to have serious flaws, which lead to allocations
that are inefficient, unfair, or both. A recently developed mechanism is attractive in theory but has several features that limit
its feasibility for practice. This paper reports on the design and implementation of a new course allocation mechanism, Course
Match, that is suitable in practice. To find allocations, Course Match performs a massive parallel heuristic search that solves
billions of mixed-integer programs to output an approximate competitive equilibrium in a fake-money economy for courses.
Quantitative summary statistics for two semesters of full-scale use at a large business school (the Wharton School of Business,
which has about 1,700 students and up to 350 courses in each semester) demonstrate that Course Match is both fair and
efficient, a finding reinforced by student surveys showing large gains in satisfaction and perceived fairness.
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1. Introduction
There are numerous settings in which resources must be
allocated but markets with money are not permitted. Prominent
examples include assigning kidneys to patients (Roth et al.
2004, 2005), medical residents to hospitals (Roth and Peranson
1999, Roth 2002), or students to public schools (Abdulka-
diroğlu and Sönmez 2003). In many of these applications,
each participant seeks one item: one kidney, one residency
position, or one school. However, there are also settings in
which the allocation problem is combinatoric because each
participant requires a bundle of items, which increases the
economic and computational complexity of the allocation
problem. Workforce scheduling is a prime example; airline
crews have preferences over a bundle of flights that they might
be assigned, and nurses have preferences over bundles of
shifts they might work. Other examples include the allocation
of players to sports teams, shared scientific resources to users,
and airport takeoff and landing slots to airlines.

The combinatorial allocation problem also arises in the
context of student course scheduling, i.e., the course allocation
problem. Each student generally wants more than one course,
students have heterogeneous preferences across courses,

students cannot attend courses that meet at the same time
(or courses that they have already taken or for which they
lack prerequisites), and courses have capacity limits, thereby
making the seats in some courses scarce resources. To solve
the course allocation problem, this paper describes a new
mechanism, Course Match, and reports on its successful
implementation at the Wharton School of Business at the
University of Pennsylvania (“Wharton”), a large business
school with approximately 1,700 students and up to 350
courses in each semester. In addition to quantitative measures
of the quality of the Course Match solution, we are able to
confirm directly, with actual “before and after” survey data
from Wharton students, real and substantial improvement in
satisfaction and perceived fairness.

Roughly speaking, Course Match works as follows. Shortly
before a semester begins, students report their preferences
across the set of offered courses, and each student is given
an endowment of fake money. Next, using the reported
preferences, endowments, course capacities, and course
timetable, Course Match conducts a massive parallel heuristic
search that solves billions of mixed-integer programs to find a
price for each course such that (i) each student receives the
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best feasible schedule he or she can afford given reported
preferences, endowment, and course prices; and (ii) all course
capacity constraints are satisfied.

The primary goal of a course allocation mechanism is
to maximize student satisfaction. To achieve this, market
designers often focus on two criteria: efficiency and fairness.
In an efficient course allocation, it is not possible to make
some students better off while leaving all other students
equally well off. Fairness can be defined in a number of ways,
but roughly speaking, a fair course allocation avoids outcomes
in which some students greatly envy the course schedule of
others, such as when some students have all of their most
preferred courses while other students have none. Fairness is
desirable in the context of course allocation because schools
generally want to provide students with equal access to all
courses. Although not generally emphasized in the theoretical
literature, the successful implementation of an allocation
mechanism also depends on its ease of use. For example,
the mechanism should not require students to complete an
overly complex decision task nor require an excessive amount
of time.

Most existing course allocation mechanisms—including
both those described by theory and implemented in practice—
can deliver either fair or efficient outcomes but not both, and
many deliver neither. For example, in the serial dictatorship
mechanism emphasized in some of the extant matching theory,
students select their entire bundle of courses sequentially,
generally with a random sequence. The lucky first student is
ensured her best schedule while the unlucky last student is
relegated to select seats from a limited set of the least popular
courses. Hence, while this mechanism is efficient, it scores
poorly in terms of fairness. The draft mechanism used by
the Harvard Business School, in which students take turns
choosing courses one at a time rather than all at once (as
in the drafting of professional sports teams), improves on
the fairness of the dictatorship but has efficiency problems
because of incentives to misreport preferences strategically
(Budish and Cantillon 2012). Auctions are used by a number
of schools, including Wharton before the implementation of
Course Match. With an auction, students are endowed with
fake money and then bid, generally over multiple rounds, for
course seats. Although auctions can be both efficient and fair
in markets that use real money (e.g., selling a painting or
allocating wireless spectrum), it has been shown that auctions
with fake money have incentive problems that do not arise
when the money is real, ultimately leading to allocations that
are neither efficient nor fair (Sönmez and Ünver 2010, Krishna
and Ünver 2008). Furthermore, and even more important
for our purposes, students reported low satisfaction with
Wharton’s auction mechanism.

Budish (2011) proposes a new mechanism for the combina-
torial allocation problem, called the approximate competitive
equilibrium from equal incomes mechanism (A-CEEI), and
demonstrates that it has desirable properties of efficiency,
fairness, and incentives. However, there are three major
concerns with respect to its implementation in practice. First,

because of the nature of the approximation errors, it may
(and is likely to) violate course capacity constraints. This
renders the solution infeasible for practice—a school may be
required to abide strictly by capacity constraints. Second, the
computational procedure in Othman et al. (2010) only finds
solutions to the A-CEEI mechanism for “small” simulated
problems, leaving open the question of whether it can be
solved for an actual problem of Wharton’s size in sufficient
time. Third, the A-CEEI mechanism assumes students are able
to report their preferences accurately. If a student is unable to
report her preferences correctly, then A-CEEI would solve the
“wrong” problem, which could lead to unsatisfied students.
Therefore, it is unknown whether A-CEEI is sufficiently robust
to errors in reported preferences. Course Match addresses
each of these issues. First, it adds two additional stages to
the Budish (2011) mechanism so that a high-quality, feasible
solution is constructed. Second, Course Match implements
a software architecture that allows it to scale sufficiently to
solve a Wharton-sized problem in a reasonable amount of
time. Third, Course Match includes a rich preference reporting
language and user interface to assist students in reporting
preferences.

2. The Course Allocation Problem

The course allocation problem is to assign a set of courses
to each student while satisfying capacity constraints and
maximizing some notion of overall well-being. To be specific,
there is a set of M courses, indexed by j , with integer
capacities (the supply) 4qj5

M
j=1, and a set of N students. The

capacity, qj , is referred to as the “target capacity” for course j ,
or, for short, just the “capacity,” because it is the desired
(or target) maximum enrollment for the course. In practice,
there also exists a maximum capacity, q̂j , for each course,
such that a course allocation is not feasible (i.e., it cannot be
implemented) if there are more than q̂j students in a course,
where clearly qj ¶ q̂j . For example, a course could have a
desired maximum enrollment of 36 students, qj = 361 but meet
in a room that has 40 seats. The school has the option to set
q̂j = 36, meaning that absolutely no more than 36 students can
be enrolled in this course for a feasible solution. However, the
school might also choose q̂j = 40, meaning that it is strongly
preferred that there be no more than 36 students in the course,
but a solution is feasible as long as there are no more than
40 students enrolled. Earlier work on the course allocation
problem assumes qj = q̂j , but for practical implementation, as
discussed later, it is important to consider qj < q̂j as an option.
That said, Course Match can solve problems with qj = q̂j .

Each student i has a set ëi ⊆ 2M of permissible course
bundles, with each bundle containing at most k¶M courses.
In the Wharton application, students are allowed to choose
their own k1 but for ease of exposition, we assume, without
loss of generality, that there is a common k. The set ëi

encodes both scheduling constraints (e.g., courses that meet
at the same time) and any constraints specific to student i
(e.g., prerequisites). Note that throughout the paper we use
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the term “course” to refer to what is sometimes in practice
called a “section” or a “course section.” In practice, sometimes
the same class material (i.e., listing in the course catalog) is
offered at multiple times and/or by multiple professors; we
refer to each section as a unique “course.”

3. The A-CEEI Mechanism and
Implementation Concerns

The A-CEEI mechanism has the following four steps. First,
students report their preferences over schedules of courses.
The theory assumes that student i reports her complete ordinal
preferences over permissible schedules, denoted by ´i. Second,
the mechanism randomly assigns to each student i a budget �i

of fake money (or “tokens”), which she uses to purchase
courses. The theory allows for budgets to be approximately,
but not exactly, equal; budgets can be arbitrarily close together,
but no two budgets can be exactly the same. Third, a computer
finds approximate market-clearing prices, i.e., a price p∗

j for
each course j such that when each student i purchases the
bundle of courses x∗

i that she likes best out of all schedules
she can afford, the market approximately clears (we describe
the nature of the approximation in detail below). Fourth, each
student is allocated her most preferred affordable bundle given
the preferences, budgets, and prices, i.e., student i is assigned
the bundle x∗

i , which solves the problem

x∗

i = arg max
´i

[

xi ∈ëi2
∑

j

xijp
∗

j ¶ �i

]

0 (1)

Note that the language we implement for reporting preferences,
i.e., reporting ´i, allows this problem to be represented as a
mixed-integer program (MIP).

Budish (2011) reports that A-CEEI has several attractive
properties for large problems and approximately so for finite-
sized problems. First, it is Pareto efficient—no student can be
made better off without making another student worse off.
This property arises because the mechanism finds an allocation
that is (approximately) a competitive equilibrium. Second, the
allocation from A-CEEI satisfies a desirable fairness property.
To explain, a mechanism is envy-free if there do not exist
two different students, i and i′1 such that student i prefers
student i′’s schedule to her own. Although A-CEEI cannot
guarantee an envy-free solution (indeed, no mechanism can),
it does yield a solution that is “envy bounded by a single
good,” meaning that if student i envies student i′’s schedule,
then it is possible to remove a single course from student i′’s
schedule to eliminate the envy. Hence, the degree of envy
with A-CEEI is limited; this property arises from the fact that
the budgets are approximately, but not exactly, equal. (Using
exactly equal budgets would be more attractive for fairness but
could make it impossible to find prices that clear the market
even approximately.) Finally, A-CEEI is strategy-proof, which
means that it is in a student’s best interest to report his or her
true preferences, no matter how other students choose to report
their preferences. This comes from the fact that student i’s
allocation x∗

i is her most preferred bundle given her budget

and the prices, and the student cannot affect either her budget
(which is assigned randomly) or the prices (which depend on
the preferences of all students, so in a large market, prices are
exogenous from the perspective of each individual student).
As a result, a student does not need to consider the behavior or
preferences of other students, which greatly simplifies the
student’s decision task, which in turn can help to increase
satisfaction with the mechanism. Furthermore, given that the
institution can assume preferences are reported truthfully, this
mechanism provides useful data to better understand students,
such as which courses, time slots, or instructors they find
desirable.

A-CEEI significantly improves on other mechanisms
described in theory and used in practice. However, as noted
above, there are three important concerns with the actual
implementation of A-CEEI: (i) it is not guaranteed to find a
price vector and course allocation that satisfies all capacity
constraints, (ii) it may not find a solution quickly enough for a
real-world–sized problem, and (iii) it finds a solution that
maximizes reported preferences but is not guaranteed to find a
desirable solution if students misreport or are unable to report
their true preferences.

To understand the first concern with A-CEEI, feasibility,
let zj be the clearing error for course j with price pj :

zj =



















∑

i

x∗

ij − qj if p∗
j > 03

max
[(

∑

i

x∗

ij − qj

)

10
]

if p∗
j = 00

If the course is assigned a positive price, then the clearing error
is the difference between the number of students assigned
to the course (i.e., total demand) and the course’s capacity.
A course is oversubscribed if its demand exceeds its capacity,
∑

i x
∗
ij > qj , and it is undersubscribed if its demand is less

than its capacity,
∑

i x
∗
ij < qj , and its price is strictly positive.

If a course’s price is zero, i.e., p∗
j = 0, then it can have

∑

i x
∗
ij < qj without counting as clearing error, as is standard

in the definition of competitive equilibrium. A price vector is
said to clear the market (i.e., it is a clearing price vector) if it
has no clearing error; i.e., �= 01 where

�≡

√

∑

j

z2
j 0

Unfortunately, a price vector with zero error may not exist
and has been shown not to exist for some problems. However,
Budish (2011) shows that as long as no two students have
precisely the same budget (i.e., there do not exist students i
and j , i 6= j , such that �i = �j), there exists a price vector
with market-clearing error of no more than � =

√
kM/2.

Students generally take -four or five courses per semester,
but some take as many as eight, so for the purpose of the
worst-case bound, say k = 8, and say an MBA program offers
300 courses, so M = 300. In that case, the bound is achieved
with a solution that has a squared clearing error no greater
than 1,200 = 4

√
8 × 300/252; e.g., all 300 courses with a
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clearing error of two seats, or 48 courses with a clearing
error of five seats and 252 courses with no clearing error. As
course capacities are not included in the bound,

√
kM/2, the

clearing error as a fraction of the total number of available
seats converges to zero quite fast as total capacity increases.
But this is not sufficient for the solution to be considered
feasible as is.

A clearing error resulting from undersubscription is not
desirable (because a seat in a popular course is left unas-
signed), but this error is viewed as less problematic than an
oversubscription error. In particular, Wharton simply cannot
implement a solution in which, as a result of oversubscription,
∑

i x
∗
ij > q̂j .

The second concern with A-CEEI, computational effort,
is primarily due to the complexity of the task. Recent work
by Othman et al. (2014) has proved that the combinatorial
allocation problem is PPAD-complete, even with access to
an oracle that can solve the student demand problem in
constant time. PPAD is a complexity class that was originally
developed and motivated in Papadimitriou (1994); in brief, it
represents search problems in which an algorithm can only
follow successive steps down a path of indeterminate length.
Many other search problems are PPAD-complete, including
solving for Nash equilibria, finding many kinds of market
equilibria, finding repeated game equilibria, finding Brouwer
fixed points, and detecting a completely colored node in the
Sperner’s lemma setting (Papadimitriou 1994, Abbott et al.
2005, Codenotti et al. 2006, Huang and Teng 2007, Borgs
et al. 2008, Chen and Teng 2009, Daskalakis et al. 2009,
Kintali et al. 2009, Pálvölgyi 2009, Chen and Teng 2011,
Vazirani and Yannakakis 2011, Chen et al. 2013, Rubinstein
2014). An algorithm that could solve course allocation to
the theoretical bound in polynomial time would be able to
solve all of these problems in polynomial time, too. However,
the consensus among computer scientists is that, just like
for the better-known complexity class NP, there do not exist
polynomial-time worst-case algorithms to solve PPAD problems
(Papadimitriou 1994, Daskalakis et al. 2009).

Although the theoretical results on computational effort are
not encouraging, Othman et al. (2010) report on a tabu-search
heuristic algorithm that finds, with reasonable effort, price
vectors that yield clearing error even lower than the bound in
simulated problems. That algorithm examines many candidate
price vectors, and it uses the resulting degree of oversubscrip-
tion and undersubscription to guide the search of additional
price vectors. However, a real-sized problem is considerably
larger than the problems solved in Othman et al. (2010).

The third concern with A-CEEI, preference reporting, is
not discussed in the theoretical literature because it is simply
assumed that the preference reporting language is sufficiently
rich so as to capture a student’s full set of preferences and
that students are able to correctly “speak” this language (i.e.,
they do not make errors reporting their preferences). These
assumptions are unlikely to hold in practice. A real-sized
problem may have 300 courses offered by 150 professors in 14
time slots, meaning that by necessity a real-world preference

reporting language must be simpler than asking students
to rank complete schedules ordinally from most to least
preferred. Any simplification risks preventing students from
reporting their actual preferences if their preferences cannot
be expressed using the language provided. Furthermore, given
the size of real problems, even a student whose preferences in
principle can be expressed using the provided language may
find it nontrivial to do so, perhaps especially if the provided
language is rich. Hence, while A-CEEI might yield a solution
that maximizes each student’s reported preference given her
budget, it might not maximize the student’s actual preference,
which jeopardizes student satisfaction (i.e., a student may
blame herself for the error, or, quite possibly, she could blame
the mechanism).

4. The Course Match Solution

Shortly before a semester begins, Course Match elicits
preferences from students. Course Match also requires a
number of other inputs, including (i) each student’s budget;
(ii) each course’s target, qj1 and maximum capacity, q̂j ;
(iii) the meeting times for each course (a student cannot be
registered for two courses that have overlapping meeting
times); and (iv) the set of courses each student has already
taken (because he or she cannot take the same course twice).
Next, Course Match uses a computational engine to derive a
course allocation that is reported to students about a week
before classes start. A few days before classes begin, a
drop/add period opens in which students, on a first-come-first-
serve basis, can drop a course, add a course with an open seat,
or add themselves to a course waiting list that automatically
advances if seats become available in the course. The primary
purpose of the drop/add period is to enable students to make
adjustments to their schedule in case their preferences change,
especially once they start taking classes.

As described later in this section, Course Match imple-
ments a refinement of the A-CEEI mechanism. Consequently,
because of the theoretical properties of A-CEEI, student bud-
gets are set equal to a base budget plus a small idiosyncratic
tie-breaking subsidy. At Wharton, the MBA students are
divided into several groups: all second-year students are one
group, and the first-year students are divided into groups based
on the semester and the number of core courses they have
tested out of. (The Wharton MBA is a two-year program.)
Each of the Ng students in group g is randomly assigned to a
distinct tie-breaking budget surplus in 800110021 0 0 0 1Ng/109.
This amount is sufficiently small such that even the largest
tie-breaking budget surplus is unable to increase a student’s
budget above the base budget of the next higher group—with
800 second-year students, the maximum tiebreaker is 80,
which is 1.6% of their base budget of 5,000. Unused budgets
from one semester do not carry over to subsequent semesters
because doing so would introduce incentives to misreport
preferences and increase decision complexity (students would
have to think about how much of their budget they want to
reserve for future use).
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The remainder of this section is divided into three parts. The
first part describes the Course Match preference language used
to elicit preferences from students. The second part details the
computational engine used to derive an implementable course
allocation (i.e., a solution in which none of the maximum
capacity constraints are violated) for a Wharton-sized problem
(computational performance is covered in Section 5). The third
part discusses alternative approaches considered, and rejected,
for addressing undersubscription and oversubscription.

4.1. Preference Elicitation

Although the theory of A-CEEI assumes that students report
a complete ordering i over their set of valid schedules ëi,
in practice, it is not possible for students to enumerate their
preferences fully because the cardinality of ëi is large. Hence,
Course Match requires a simple preference language that
students can understand and use to report their preferences
with reasonable accuracy. Furthermore, the language must
result in preferences that can be solved quickly and reliably by
a computer. For our purposes, this means that they must be
translatable into a MIP that finds a student’s most preferred
schedule at a given price vector (i.e., the student’s most
preferred affordable bundle). Course Match’s elicitation
procedure of translating complex human utilities into MIPs is
similar to the process used in practice to elicit preferences
in combinatorial auctions (Sandholm and Boutilier 2006,
Sandholm 2007).

The reporting language in Course Match allows students
to report a (cardinal) utility value for each course as well
as for pairs of courses (i.e., “extra” utility value, positive or
negative, associated with getting the two courses together in a
schedule). Utilities for both individual courses and course
pairs are weighted by credit units (CUs), the measure of how
much a course counts toward a Wharton degree. Most courses
are worth either 1.0 or 0.5 CUs. The student’s utility for a
schedule is then taken to be the (CU-weighted) sum of the
student’s utilities for the courses in that schedule, plus (or
minus) any reported utilities for course pairs in that schedule.
Schedules can be rank-ordered by their utilities to determine
the student’s best schedule given a price vector and his or her
budget, i.e., to solve (1). Observe that this language transforms
problem (1) into a MIP. Following are more details on the data
student input:

4.1.1. Course Utilities. Students report their utility (i.e.,
preference) for each course on a 0 to 100 integer scale: 0
means the student does not want the course, and 100 means the
course is the most preferred. While it is not strictly necessary
to place a cap on the utility for each course, the cap provides
an intuitive focal point for students. Given that the utility of a
schedule is the CU-weighted sum of the reported utilities,
a 0.5 CU course can contribute at most 50 to the utility of
a schedule, even though the student can still report utilities
up to 100. This is done so that the sum of the maximum
utilities for two 0.5 CU courses cannot be greater than the
sum of the maximum utility for a 1.0 CU course. It was

found that students preferred this approach over summing
utilities without adjusting for credit units. Figure 1 displays a
screenshot of the student preference reporting interface.

4.1.2. Pairwise Adjustments. Students can select any
pair of courses and apply either a positive or negative utility
adjustment to the pair between −200 and 200. This allows
students to express the preference that taking two courses is
either more desirable than the sum of the courses individually
(with a positive adjustment) or less desirable than the sum of
the courses individually (with a negative adjustment). For
instance, if a student really wants to take an entrepreneurship
and a venture capital course together, then the student can
assign a high utility to each of them individually and a
positive adjustment for the pair to indicate that the bundle is
particularly desirable (worth more than the sum of the two
individual utilities). Or, if the student wants to take either the
entrepreneurship class or the venture capital class, but not
both, the student can assign a negative adjustment to lower the
value of the bundle in the schedule. This adjustment can be
chosen so that the bundle’s utility is nonpositive, ensuring
that the bundle is never selected. While it is not necessary to
have an upper bound of 200 for adjustments, it was found that
unbounded adjustments created confusion with some students
in preliminary tests. In particular, some students thought they
could use adjustments to circumvent the upper bound on
the utility for each course without realizing that utilities are
relative, so the absolute scale does not matter. The upper bound
on adjustments avoids this misunderstanding by a few students
while not significantly limiting the ability of students to report
their preferences. Allowing for adjustments on sets of three
or more classes was discussed but rejected; ultimately, the
potential benefits from increased preference expression were
judged not to be worth the additional complexity. Figure 2
shows the utility entry page with the “Adjustment” tab shown
on the right-hand side.

4.1.3. Capacity Constraints. Students can specify the
maximum number of credit units they wish to take in a
semester.

Although students are able to think about their preferences
over courses and pairs of courses intuitively, their ultimate
preference is over the course schedule they receive. However,
even ignoring the price vector and budgets, it is nontrivial for
students to map their reported preferences to a rank order over
permissible schedules. Hence, the user interface also provides
students with a way to view their “top schedules” given their
reported utilities, as shown in Figure 3. This feature enables
students to see, using a calendar view, the rank order of their
schedules and the differences in utility values across schedules.
For example, in Figure 3 there are relatively large gaps in
utility between the first, second, and third schedules but a
small gap between the third and fourth. Students are told that
they will receive the highest-ranked schedule that they can
afford once course prices are determined. Consequently, if
they do not like the ranking of schedules as seen through
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Figure 1. (Color online) Main utility entry interface students use to input their preferences.

Notes. The first column lists the course number. (When a course is cross-listed in multiple departments, the student can choose which department she wants to
take it from in the fifth column, e.g., to satisfy requirements for a major.) The second column provides the course name and other course details. The third
column lists the number of CUs of the course. The fourth column indicates whether the course is the full semester or whether it meets for only the first or
second quarter of the semester (a semester is made of two quarters). The fifth column is where students enter their utilities. All inputs are defaulted at 0 and can
be set to any integer between 0 and 100. The “My Utility Distribution” tab shows the course numbers ranked by the student’s reported utilities.

Figure 2. (Color online) Alternate tab of utility placement screen showing interface for adjusting utilities placed on
combinations of courses.

Notes. The right panel illustrates pairwise adjustments. For the left panel, see the notes to Figure 1. The lock in the fifth column indicates that the student is
ineligible to take the course, e.g., because the student has already taken it or lacks a prerequisite.
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Figure 3. (Color online) A student’s top schedules are generated from his or her reported preferences and shown in a separate
step before the input is saved.

this feature, they can refine their inputted course values and
adjustments to better reflect their preferences over schedules.

The Course Match preference reporting language was
initially pilot tested in the laboratory (Budish and Kessler
2015), as part of an experimental test of the overall suitability
of the Budish (2011) mechanism for real-world use at Wharton.

4.2. Computational Engine

Course Match finds a solution to the course allocation problem
with an algorithm divided into three stages. Stage 1, price
vector search, uses an enhanced version of the Othman et al.
(2010) computational procedure to find a price vector p∗ that
is an approximate competitive equilibrium in the sense defined
by Budish (2011). This allocation may have both oversub-
scription and undersubscription errors. Stage 2, eliminate
oversubscription, modifies the prices from Stage 1 so as to
eliminate all oversubscription errors that cause violations of
the strict capacity constraints (the q̂j capacities); at this stage,
the solution is feasible. Stage 3, reduce undersubscription,

then attempts to reduce, to the extent possible, any undersub-
scription errors, without too much compromise of fairness
considerations.

4.2.1. Stage 1: Price Vector Search. Stage 1 in Course
Match computes the A-CEEI mechanism. To obtain a solution
with minimal price clearing error below the theoretical bound,
it follows a tabu search heuristic originally developed in
Othman et al. (2010). The pseudocode for this stage is
displayed in Algorithm 1.

The heuristic search is performed over the price space
and is composed of a series of search starts until the allotted
time for searching is reached (e.g., 48 hours). A search start
proceeds through a series of steps, each with a candidate price
vector, the first of which is a randomly generated price vector
(line 3). With each step, a set of neighbor price vectors is
generated (line 8). Each neighbor is an intuitive permutation
of the candidate price vector. Neighbors that yield a course
allocation identical to one of the previous candidate price
vectors are dropped. This “tabu” component of the search
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Algorithm 1 (Heuristic search algorithm through price space, originally developed in Othman et al. 2010)
Input: �̄ the maximum student budget, d2 p 7→�M course demands at a price vector, N 2 p 7→ 4p̃k5

K
k=1 function that generates the

set of neighbors of a price vector sorted by clearing error �2 ascending, t overall time limit
Output: p∗ price vector corresponding to approximate competitive equilibrium with lowest clearing error.
1: besterror ← � F besterror tracks the best error found over every search start
2: repeat
3: p← 4U 60117 · �̄5Mj=1 F Start the search from a random, reasonable price vector
4: searcherror ← �4d4p55 F searcherror tracks the best error found in this search start
5: � ← � F � is the tabu list
6: c ← 0 F c tracks the number of steps taken without improving error
7: while c < 5 do F Restart the search if we have not improved our error in five steps
8: �←N4p5 F This requires evaluating the clearing error of each neighbor
9: foundnextstep ← false

10: repeat
11: p̃←� 0pop4 5 F Remove the front of the neighbor list
12: d← d4p̃5
13: if d 6∈ � then F If p̃ does not induce demands found in our tabu list, it becomes the next step in our search
14: foundnextstep ← true
15: end if
16: until foundnextstep or � 0empty4 5
17: if � 0empty4 5 then
18: c ← 5 F All neighbors are in the tabu list; force a restart
19: else F p̃ has the next step of the search
20: p← p̃
21: � 0append4d5
22: currenterror ← �24d5
23: if currenterror < searcherror then
24: searcherror ← currenterror
25: c ← 0 F We improved our search solution, so reset the step counter
26: else F We did not improve our solution from this search start, so add to the step counter
27: c ← c+ 1
28: end if
29: if currenterror < besterror then
30: besterror ← currenterror
31: p∗ ← p
32: end if
33: end if
34: end while
35: until current time > t.

prevents visiting the same effective spot in the search space
multiple times (i.e., even if two price vectors are not identical,
if they generate identical course allocations, then they are
effectively identical). The remaining neighbor with the lowest
clearing error, based on the target capacities qj1 is selected as
the new candidate (line 20), even if its clearing error is greater
than the clearing error of the previous candidate price vector.
This allows the search process to explore other regions of
what is presumed to be a rugged landscape. However, the
search start terminates if there is no improvement in the best
clearing error across five consecutive steps (i.e., candidate
price vectors) or if the allotted time is reached. If a search start
terminates and time remains, another search start is initiated.
Search starts are independent of each other in the sense that

they might adopt equivalent price vectors; i.e., the tabu list of
visited price vectors is cleared with each search start (line 5).

As in Othman et al. (2010), neighbors are composed of the
union of two distinct sets of neighborhoods:

Gradient Neighbors. In a gradient neighbor, the price of
every course is adjusted proportionally to its number of seats
of undersubscription or oversubscription. So a course that is
oversubscribed by four seats will see its price raised twice
as much as a course oversubscribed by two seats, and the
neighborhood is formed by considering a number of potential
step sizes along this gradient vector (we used up to 12). These
steps can be thought of as a tâtonnement performed by a
Walrasian auctioneer.

Individual Adjustment Neighbors. Each neighbor of this
type is the product of changing the price of a small set of
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courses. Let C be the number of under- or oversubscribed
courses. To limit the number of neighbors, min�C�40� neigh-
bors are created. If C � 40� then each of the C neighbors
adjusts the price of a single course. If 40 <C� then the C
courses are evenly (and randomly) assigned to 40 neighbors.1

With each neighbor, the price of an oversubscribed course
slated for adjustment is increased to reduce its demand by
exactly one student, while the price of an undersubscribed
course slated for adjustment is dropped to zero.

There exists a time constraint in Course Match because
both administrators and students expect to see schedules for a
semester produced within a few days of submitting preferences.
However, an enormous amount of computational work is
required to find an approximate equilibrium in the heuristic
search. To give a sense of the computational effort required in
a Wharton-sized problem, evaluating the clearing error at each
candidate price vector requires solving approximately 1,700
MIPs (one for each student), each iteration requires evaluating
approximately 50 neighbors, a typical search start may take
100 steps (i.e., candidate price vectors), and an entire Course
Match run may perform 500 search starts. So in total, solving
a Wharton-sized problem requires computing solutions to
about 4.25 billion MIPs. If it takes one millisecond to solve
each MIP—an optimistic assumption in practice—finding an
approximate competitive equilibrium would still take about
seven weeks.

To reduce the time needed to find a solution in Stage 1, it is
possible to parallelize some of the work. The natural point
to parallelize is the evaluation of each of the neighbor price
vectors with each step of a search start because given a price
vector, each student’s MIP is independent of all the other
MIPs that need to be solved. Thus, at each step approximately
85,000 independent MIPs need to be solved (1,700 MIPs per
price vector and 50 price vectors). In the software architecture
described in Othman et al. (2010), those MIPs are solved on a
single compute server consisting of distinct cores. In Course
Match each compute server has 32 cores. About three cores
are needed to perform non-MIP solving tasks, leaving about
29 cores dedicated to solving MIPs. Hence, with each search
step, those 29 cores can simultaneously solve MIPs, with
each assigned approximately 2,931 MIPs (85,000/29). This
approach does not scale linearly, but Othman et al. (2010)
show scaling at 90% efficiency on multiple cores of the
same compute server; i.e., using n cores is 0�9n times faster
than one core. Nevertheless, when we ran computational
experiments to evaluate this single-server architecture, we
found significant potential gains in solution quality from
using more computational power than a single server could
provide in the 48 hours allotted. (A single compute server can
complete about 60 search starts in 48 hours, and we found in
our experiments that market-clearing error continued to go
down with additional search well beyond 60 search starts.)

We explored two ways to add additional computational
capacity to improve on the performance of the Othman et al.
(2010) architecture. The first, which we call the integrated
architecture, extends Othman et al. (2010) in an intuitive way

from one compute server to a cluster of compute servers—
maintain a few cores to perform non-MIP-solving tasks and
dedicate the remaining cores, across different compute servers,
to solving MIPs. With the integrated architecture, all of the
cores within the cluster are working on the same search step
of the same search start; i.e., at any given moment, the cluster
is working on a single search start. The second approach,
which we call the independent architecture, operates multiple
compute servers independently within a cluster. In this case,
a cluster of n compute servers works on n different and
independent search starts at the same time. Furthermore,
each compute server must dedicate several cores to non-MIP-
solving tasks, leaving fewer cores within the cluster to work on
MIPs relative to the integrated architecture. However, with the
independent architecture, there is no need for communication
across compute servers because they operate independently.
By contrast, with the integrated architecture, communication
must occur across compute servers because they are working
on the same search start.

The additional communication overhead with the integrated
architecture is substantial and significantly decreases the
ability to use additional compute servers to speed up the
process. To illustrate, we compared both the integrated and
independent architectures by performing the Course Match
search for a half hour on each of a progressively increasing
number of Amazon cc2.8xlarge compute servers. Figure 4
shows the relative speedup (measured in terms of the number
of MIPs solved in a half hour) using each approach. The
independent architecture is able to achieve a linear speedup
in the number of compute servers used—it runs 16.0 times
faster when 16 compute servers are used. By contrast, the
integrated architecture appears to plateau at 3.8 times the
speed of a single compute server when using eight or more
servers. This finding is consistent with other results on the
relative performance of increasing the number of compute
servers when parallelizing complex algorithms (e.g., Sun and

Figure 4. (Color online) Comparison of horizontal scala-
bility between running a distinct search on each
compute server (an independent architecture)
vs. running a single search using all compute
servers (an integrated architecture).
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Rover 1994). Thus, Course Match adopts the independent
architecture to achieve the required computational speed.

4.2.2. Stage 2: Eliminate Oversubscription. The heuris-
tic search in Stage 1 outputs a price vector that has market-
clearing error below the theoretical bound. However, this error
may consist of both oversubscription and undersubscription,
and oversubscription can cause a solution to be infeasible.
That is, it is possible that the price vector from Stage 1
results in an allocation in which some course’s maximum
capacity constraint q̂j is violated. The goal of Stage 2 is to
transform the Stage 1 solution into one that does not violate
any maximum capacity constraint, i.e., a solution that can
feasibly be implemented in practice.

In the context of the Stage 2 algorithm, a course is said
to be oversubscribed if it is assigned strictly more than q̂j
students. To eliminate oversubscription, Stage 2 relies on the
property that starting from any given price vector, demand for
any single course j is monotonically decreasing in course j’s
price. To be specific, Stage 2 iteratively identifies the most
oversubscribed course and then raises its price to eliminate half
of its oversubscription. It finds the necessary price increase
via a binary search. Pseudocode for Stage 2 is given below as
Algorithm 2.

Although a course’s oversubscription always decreases
when its price is raised, its oversubscription can increase again
at a later step in the algorithm when another course’s price is
increased. Nevertheless, because prices are only increased
and there exists a vector of suitably high prices at which no
courses are oversubscribed, Algorithm 2 eventually terminates
with a solution that has no oversubscription.

Algorithm 2 (Iterative oversubscription elimination algorithm, reducing by half the excess demand of the most oversubscribed
course with each pass)
Input: p∗ heuristic search solution price vector from Algorithm 1, p̄ scalar price greater than any budget, � smaller than budget

differences, excess demand function d̂4p5 that maps a price vector to the demand of a course beyond its maximum
capacity.

Output: Altered p∗ without oversubscription
1: j ′ ← arg maxj d̂j4p

∗5 F j ′ is the most oversubscribed course
2: while d̂j ′4p

∗5 > 0 do
3: d∗ ← �d̂j ′4p

∗5/2� F Perform binary search on the price of course j ′ until oversubscription equals (at most) d∗

4: pl ← p∗
j ′

5: ph ← p̄
6: repeat F Our target price is always in the interval 6pl1 ph7, which we progressively shrink in

half in each iteration of this loop
7: p∗

j ′ ← 4pl +ph5/2
8: if d̂j ′4p

∗5¾ d∗ then
9: pl ← p∗

j ′

10: else
11: ph ← p∗

j ′

12: end if
13: until ph −pl < �
14: p∗

j ′ ← ph F Set to the higher price to be sure oversubscription is at most d∗

15: j ′ ← arg maxj d̂j4p
∗5 F Find the most oversubscribed course with the new prices

16: end while.

The choice to eliminate half of the oversubscription with
each iteration is somewhat arbitrary but was selected to balance
the runtime and efficiency concerns that emerged from the
choices at each extreme. For instance, at one extreme, only a
single student could be removed from the most oversubscribed
course; i.e., line 3 of Algorithm 2 could be d∗ ← d̂j ′4p

∗5− 1.
In our exploratory analysis, this was found to be very slow
in practice, requiring a huge number of iterations, as prices
were slowly raised between sets of desirable complementary
courses. At the other extreme, oversubscription could be
eliminated entirely from the most oversubscribed course; i.e.,
line 3 of Algorithm 2 could be d∗ ← 0. While this raises the
price of courses quickly and produces a feasible solution in
fewer iterations, we found that it produced allocations with
very high clearing error, because it can make price adjustments
that are too large and therefore yield higher course prices than
necessary to get a solution without oversubscription.

4.2.3. Stage 3: Reduce Undersubscription. After
Stage 2 eliminates oversubscription, the solution is feasible,
but it is now likely to have a considerable amount of under-
subscription error, i.e., demand in positively priced courses
less than the target capacity,

∑

i x
∗
ij < qj . If this solution were

adopted, then the empty seats in positively priced courses
are likely to be acquired quickly in the drop/add period at
the start of the semester. There are several reasons why it
is not desirable to have undersubscribed seats acquired that
way. First, a student with a strong preference for a seat in a
popular course may lose the seat to a student with less of an
interest in the course, which works against the goal of trying
to allocate courses in such a way that the seats in each course
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are assigned to the students with the strongest preference
for the course. Second, as the Course Match budgets are
no longer relevant in the drop/add period, a student may be
able to acquire a seat in a popular course for essentially zero
cost. In that case, the student obtains a better schedule than
would have been affordable within Course Match, creating
concerns around actual and perceived fairness. Third, the
drop/add period rewards students who are able to participate
at the time it opens, and at least some students are likely to be
unable to participate at any selected time in the days before
the semester begins.

The goal of Stage 3 is to provide a better solution to under-
subscription than the drop/add period (or a similar aftermarket).
Ideally, empty seats in positively priced courses would be
assigned to the students with the strongest preferences for
those seats, while not creating an incentive for students to
misrepresent their initial preferences to Course Match. With
that guiding precept in mind, the Stage 3 algorithm appears
in pseudocode below as Algorithm 3. To simplify notation
in the pseudocode, we define a special choice function for
each student i, x̆∗

i . This choice function takes as arguments the
student’s initial budget, �i, and the set of courses formed by
taking the union of the courses in the student’s initial allocation
and the courses that currently have open seats, denoted as �i.
The choice function then returns the student’s most preferred
affordable schedule out of the courses in this set �i, using the
prices p∗ found in Stage 2, the student’s original reported
preferences ´i, and the student’s new budget �̆i (updated
from �i by increasing the budget in a way described below).
Since the student’s new budget will be higher than his or her
original budget, the student can always afford the schedule as
of the end of Stage 2; i.e., the student’s allocation can only
improve from what he or she received in Stage 2. Formally,
the choice function is defined as follows:

x̆∗

i 4�i1 �̆i5≡ arg max
´i

[

xi ∈ëi2
∑

j

xijp
∗

j ¶ �̆i1 xij ∈�i

]

0

Stage 3 iteratively selects students and assigns a selected
student the best schedule the student can afford from the

Algorithm 3 (Automated aftermarket allocations with increased budget and restricted allocations)
Input: Input allocations xij = 1 if student i is taking course j , restricted demand functions x̆∗

i 4�i1 �̆i5, S students ordered by
class year descending and then by budget surplus ascending.

Output: Altered allocations xij .
1: repeat
2: done ← true
3: �← 6Course j ∈M2

∑

j xij < qj 7. F � is the set of currently undersubscribed courses
4: for Student i ∈ S do F Iterate over the students in a fixed order
5: x′

i ← x̆∗
i 4�∪ xi1101 ×�i5 F Reoptimize over a restricted set of courses with 10% more budget

6: if xi 6= x′
i then

7: done ← false
8: xi ← x′

i

9: break F Break out of the for loop, so that only one student changes his or her allocation in each pass
10: end if
11: end for
12: until done. F Done only if we do a pass without any students changing their allocation

set of seats that are in the student’s current schedule and in
courses with open seats (i.e., enrollments less than target
capacity). After a student selects these seats, they are no longer
available for other students. By definition, a student’s schedule
after Stage 2 is best for the student within his or her current
budget. Hence, if there were no change in budgets, there
would be no change in the allocated courses. Consequently,
in Stage 3 each student is awarded a 10% increase in his or
her budget. The objective of this budget subsidy is to allow
many students to receive a reasonable improvement in their
schedules rather than to have a few students receive large
improvements. Furthermore, it is important to emphasize
that students are not allowed to acquire seats in full courses
even if their extra budget would allow them to afford such
seats at the current prices. In sum, Stage 3 sacrifices some
equity (because students early in the selection process have a
wider selection of courses on which to spend their new higher
budget) to improve upon efficiency (reduce undersubscription)
while using the rich preference data to allocate those seats in a
rational manner. Note as well that the addition of Stage 3 does
not affect the conclusion that the mechanism is strategy-proof
in the large.2

A student’s course allocation after Stage 3 may cost more
than the student’s initial budget, meaning that students may
“receive schedules that are even better than what they could
afford.” However, this is not viewed as a concern for four
reasons:

1. Not every student uses the extra budget, nor do students
use the entire budget (e.g., a 1% increase in their budget may
be sufficient to get their most preferred schedule).

2. The Stage 2 prices are in some sense too high (because
there is only undersubscription and no oversubscription), so
adding small amounts to budgets helps to compensate for this
pricing error.

3. The 10% increase in a student’s budget in Stage 3 is not
worth the same as a 10% budget increase in the earlier stages
because this budget increase can only be used to acquire
courses with empty seats.
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4. Wharton administrators viewed a 10% increase as a
tolerably small adjustment to budgets relative to the efficiency
gains achieved.

The students selected early in the Stage 3 sequence have an
advantage—they can receive access to desirable courses before
other students. Hence, Course Match sequences students in
the following manner:

1. All second-year students come before any first-year
student.

2. Within a year, students are ordered in increasing order
of the tie-breaking budget subsidy; i.e., those with the smallest
tie-breaking budgets act first.

The second-year-first ordering reflects the cultural expec-
tation at Wharton that second-year students should have
preferential access to courses relative to first-year students.
Within a year, however, the ordering has an intuitive fairness
quality. Students with the smallest budget subsidies lose
the tiebreaker in the previous stages of Course Match and
are compensated by having a better position in the final
stage of Course Match. Exploring the theoretical fairness and
efficiency properties of our ordering scheme and alternatives
is an open question for future work.

At the conclusion of Stage 3 we have our final course
allocation. In this final allocation all maximum capacity
constraints are satisfied, and each student receives (at least)
the best schedule he or she can afford given the student’s
initial budget and the final prices from Stage 2.

4.2.4. Alternative Approaches toMarket-Clearing Error.
We considered a number of alternative approaches to the
problems of oversubscription and undersubscription resulting
from Stage 1 that we ultimately rejected in favor of Stages 2
and 3 described above:

Drop Students from Oversubscribed Courses. If after
Stage 1 there are more students assigned to course j ,

∑

i x
∗
ij ,

than its capacity (either qj or q̂j), then a sufficient number
of students could simply be dropped from the course. This
could be done with a lottery that randomly selected students to
drop with equal likelihood. However, such an approach might
drop students who have the strongest interest in the course,
which reduces both efficiency and fairness. Alternatively, the
drop process could be based on some observable data—for
example, dropping the students who assigned the lowest utility
to the course (or, to be more sophisticated, the students who
would have the smallest percentage reduction in utility if they
were dropped from the course). However, such rules create an
incentive for students to misreport their preferences because
they treat each student’s reported preferences similar to bids in
an auction (i.e., the highest qj bids win) and would introduce
the problems associated with strategic bidding present in
auction mechanisms, which Course Match seeks to eliminate.
Furthermore, as a result of a random approach for dropping
students, it would no longer be true that each student “receives
the best schedule they can afford,” which was considered
to be a valuable claim for gaining student acceptance of the
program.

Artificially Lower Target Capacities. The capacity assigned
to course j , qj , need not equal the maximum capacity, q̂j . One
option is to set the target capacity, qj , such that there is a
sufficient buffer between it and the maximum capacity; i.e.,
q̂j − qj is “large enough.” For instance, if a course is held in a
room with 50 seats 4q̂j = 505, then instead of choosing 50 as
the target capacity, choose something like 40 seats 4qj = 405.
If the Stage 1 solution has fewer than 10 oversubscribed seats,
then the solution is actually feasible for the real problem.

There are several issues with this approach:
1. It is not possible a priori to know which courses need a

buffer or how large that buffer should be. One could attempt to
design an algorithm to determine the buffer quantities, but this
is likely to be a challenging, nonlinear, probabilistic search
problem.

2. This approach is likely to leave empty seats in popular
courses (i.e., courses with positive prices). Although such a
solution could be implemented, it would not be well received
by students.

3. There is no guarantee that this approach actually yields
a feasible solution, because if the buffer is not chosen to be
large enough, then it remains possible that

∑

i x
∗
ij > q̂j for

some j .
4. Finally, artificially lowering the target capacities reduces

the amount of slack in the allocation problem, which makes
the Stage 1 search problem harder. To see why, first note
that with enough slack the allocation problem is trivial: price
all courses at zero and give each student his or her most
preferred schedule. But as capacity becomes more restrictive,
fewer courses have a zero price, which makes the effective
dimension of the search problem larger. In our exploratory
analysis, large reductions in course capacity made the search
problem substantially harder, producing low-quality solutions.

Weighted Search. Given that oversubscription is costlier
than undersubscription, a reasonable remedy is to penalize
oversubscription by a greater amount than undersubscrip-
tion (e.g., penalize oversubscription five times as much as
undersubscription) in the Stage 1 price vector search.

We found that this approach resulted in substantially worse
overall search performance, producing results that, much to our
surprise, actually increased oversubscription. We conjecture
that this counterintuitive result is because the error function
plays two roles in the Stage 1 price vector search process. The
first role is straightforward: is the candidate solution a good
solution (i.e., low clearing error)? The second role is subtle:
the clearing error score guides the search from a random initial
starting point to a good solution (line 11 of Algorithm 1).
When the weighting vector of the search is altered, the hope is
to affect only the former role (solution quality) and produce
solutions more skewed toward undersubscription. But we
believe it also detracts from the second role, which is to
guide the search process to a better solution. This may occur
because the search problem is very challenging, with many
local minima. As shown in Table 1, the path toward a good
solution almost always involves taking steps through bad
solutions. Informally stated, in challenging search problems,
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you need to enter a valley before you can climb a different hill.
By weighting the search vector, the search is far less likely to
enter intermediate solutions with oversubscription and hence
more likely to get stuck in a local minimum.

5. Computational Results
This section reports on the output of a production run of
Course Match for the spring 2014 semester. The run used
seven Amazon EC2 cc2.8xlarge instances for 48 hours
and was conducted in December 2013. In Section 5.1 we
discuss the performance of the Stage 1 heuristic search,
and in Section 5.2 we present results on solution quality
across all three stages of Course Match. Section 5.3 discusses
analogous results for nonproduction runs conducted to assess
robustness; full details of these robustness runs are presented
in Online Appendix A (available as supplemental material at
https://doi.org/10.1287/opre.2016.1544).

5.1. Search Results

Table 1 reports summary statistics of the Stage 1 price
vector search process of the spring 2014 Course Match
production run.

Two observations from Table 1 are of particular interest.
First, fewer than 5% (20/418) of the search starts followed
a strict hill climb, meaning that the search improved until
it found a local minimum that was the best-found solution
in that start. Put another way, in more than 95% of search
paths, the best-performing solution was found on a path that at
some point moved to neighbors that temporarily decreased the
solution quality. (Recall that Algorithm 1 allows the search to
take up to five of these steps before terminating the search
start.) This suggests that the search space is challenging
and filled with local minima. The success that our tabu
search achieved in this setting is in line with past successful
applications of tabu search in challenging domains (Watson
et al. 2003).

Second, even with the large amount of computational power
behind it, only a vanishingly small fraction of the potential
search space was actually explored. Consider a dramatically
simpler version of our search problem, in which courses can
be assigned only one of two prices, 0 or 1. The number of price
vectors explored in this run could exhaustively enumerate

Table 1. Stage 1 price vector search summary statistics
for the spring 2014 Course Match production
run.

Compute servers 7
Hours 48
Number of courses 351
Number of search starts 418
Search paths performing a strict hill climb 20
Price vectors explored 2.0 million
Total MIPs solved 4.5 billion

Note. A “strict hill climb” is a search path that does not improve its
best-found solution by temporarily moving to a price vector with a higher
clearing error.

only a 21-course allocation problem, far smaller than the
351 courses under consideration. In fact, the actual problem is
much larger. If we discretized the price space by unit prices
up to 5,000 (a second year’s base budget) for each course, an
exhaustive enumeration of potential price vectors would have
cardinality 5�000351 ≈ 101�300, of which we explore 2× 106.
For context, 101�300 is much larger than the number of atoms
in the universe, and 2× 106 is much smaller than the number
of atoms in a grain of sand. Our heuristic search procedure is
powerful enough to produce practical solutions despite the
size of the problem.

Figure 5 shows a plot of the average squared error of the
best solution found on each search start, plotted against the
number of steps taken in a search start (i.e., the number
of times through the inner loop of Algorithm 1). The error
falls quickly for about the first 10 steps before the rate of
decrease tapers off. The straight line on the plot represents
the theoretical bound on clearing error. Since the number of
courses in spring 2014 was M = 351, and the largest requested
bundle was k= 8 courses, there exists at least one solution to
the allocation problem with total squared clearing error of at
most Mk/2 = 1�404. The average search start crossed this
bound after taking 21 steps.

Figure 6 provides a hint as to why the error falls so quickly
in the early stages of the search. Recall that at a given
price vector the search can step to a member of one of two
neighborhoods: either one that adjusts only the price of a
single course or a gradient step that simultaneously adjusts
the price of every course. The figure shows that early in the
search, gradient steps are selected almost exclusively, and
then there is a steep drop-off in their frequency of selection
after approximately 20 steps. Observe that this matches the
drop in squared error, suggesting that squared error drops
quickly when gradient steps are being taken but much slower
when they are of limited use. However, the gradient steps are
not ignored at later stages of the search. Our results indicate

Figure 5. (Color online) The squared error of the best-
found solution in each step of the Stage 1 price
vector search (i.e., line 24 of Algorithm 1),
averaged over all search starts, in the spring
2014 Course Match production run.
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Notes. The theoretical error bound is given by the dotted line. The y axis is
log scaled.
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Figure 6. (Color online) The average fraction of search
steps that selected a gradient neighbor (i.e.,
p̃ is of the gradient neighbor type in line 20 of
Algorithm 1) at a given number of steps in the
spring 2014 Course Match production run.
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that gradient steps are selected about 15% of the time after 50
steps of a search start.

Recall from Algorithm 1 that the search restarts when a
series of five sequential steps do not improve its squared error.
Figure 7 shows the fraction of search starts that survive taking
a given number of steps without restarting. It shows that the
pace of restart begins to quicken around the 50th step.

5.2. Stage Comparison

Table 2 presents measures of solution quality for each of the
seven compute servers for each stage of the Course Match
algorithm. It reports squared market-clearing error �2, broken
separately into error arising from oversubscription and error
arising from undersubscription; the total error in seats; and
a measure of deadweight loss, defined as the value of the
undersubscribed seats divided by the total value of all seats.
As each compute server operates independently, each compute
server yields a distinct solution after each stage. There are
several interesting results from Table 2.
• The compute server with the best solution changes across

stages and metrics. Server 2 has the lowest squared error after

Table 2. Stagewise results from the spring 2014 Course Match production run.

Stage 1: Price vector Stage 2: Oversubscription Stage 3: Undersubscription
search �2 elimination �2 reduction �2

Compute server + − Seats Loss (%) + − Seats Loss (%) + − Seats Loss (%)

1 51 40 32 0.19 0 141 67 0.80 0 31 17 0.07
2 23 28 24 0.20 0 205 97 1.26 0 30 16 0.07
3 75 35 25 0.31 0 138 74 0.96 0 21 17 0.07
4 36 125 71 0.68 0 228 106 1.00 0 83 33 0.33
5 59 48 36 0.28 0 201 87 1.15 0 52 24 0.09
6 53 48 32 0.22 0 186 86 0.87 0 32 22 0.07
7 47 56 42 0.54 0 202 86 1.13 0 17 13 0.02

Notes. Each column refers to the solution after that stage completes. Squared clearing error, �2, is provided for oversubscription (+) and undersubscription (−)
separately, with oversubscription in all cases measured relative to maximum capacity, q̂j , and undersubscription measured relative to target capacity, qj . “Loss”
is the percent deadweight loss from undersubscribed seats in positive-price courses (i.e., the total value of those seats, based on their price, relative to the total
value of all seats).

Figure 7. (Color online) The average fraction of search
starts surviving to a given number of steps (i.e.,
we have not broken out of the intermediate loop
begun on line 7 of Algorithm 1) in the spring
2014 Course Match production run.
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the Stage 1 price vector search; server 1 after the Stage 2
oversubscription elimination; and server 7 had the lowest
deadweight loss and fewest undersubscribed seats following
the conclusion of the Stage 3 undersubscription reduction.
This result strongly suggests the value of running the entire
search process in parallel across many different compute
servers.
• The amount of squared error increased on each server as

a result of the Stage 2 oversubscription elimination process.
Because squared error is symmetric, in general, the solutions
at the end of the Stage 1 price vector search will have
total error approximately equal between oversubscription
and undersubscription. Consequently, we should expect
squared error to increase when we move to a solution without
oversubscription.
• The number of empty seats does not strictly correspond

to the total deadweight loss. In some solutions the unallocated
seats are in low-price courses, while in others they are in
high-price courses. In the server 4 solution each seat in
the average undersubscribed course is worth 0.01% of the
economy, while in the server 7 solution undersubscribed seats
are worth about a sixth of that.
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• In Stage 3 undersubscription reduction, there is on
average a 77% reduction in the number of positive-price
undersubscribed seats and a 90% reduction in deadweight loss.
This is a significant increase in efficiency from a relatively
small adjustment in budgets (10%).

• Since the Stage 1 price vector search utilizes an enhanced
version of the prior state-of-the-art algorithm (Othman et al.
2010), comparison of solution quality after Stage 1 to solution
quality after Stage 3 gives a sense of the improvement Course
Match makes to the prior state of the art. Since Othman et al.
(2010) uses a single-server architecture and Course Match
uses a multiserver architecture, the most relevant comparison
is between the average performance of the Stage 1 search and
the best performance of the Stage 3 search. Course Match
improved total squared error from 103 to 17 (84% reduction),
improved error in seats from 37 to 13 (65% reduction),
and improved deadweight loss from 0.54% to 0.02% (94%
reduction). If instead we used the best Stage 1 performance
as the benchmark (essentially moving Othman et al. (2010)
to our independent architecture), the improvements would
be 67% for total squared error, 46% for seats, and 89% for
deadweight loss. Perhaps more importantly, the prior state
of the art yielded a solution that was infeasible because of
a violation of capacity constraints, whereas Course Match
yields a feasible solution. A disadvantage relative to the prior
state of the art is the extra budget inequality needed in Stage 3
to achieve these results.

Of the seven solutions, the server 7 solution was advanced
for implementation by the Wharton program administrators
because it had the lowest deadweight loss. There were then
last-minute course modifications by Wharton administrators
that necessitated rerunning the search (with less computational
time); the best solution in this rerun had deadweight loss of
0.07%. In future production runs, Wharton plans to continue
to select the solution with the lowest deadweight loss after
Stage 3.

5.3. Robustness

In Online Appendix A, as a robustness check, we perform the
analyses of Sections 5.1 and 5.2 for the fall 2013 semester.
The detailed computational performance data had not been
maintained from the original production run, so we reran
Course Match on the fall 2013 preference and capacity data in
early 2016. To get an apples-to-apples comparison, we also
reran Course Match on the spring 2014 data in early 2016.

At a high level, results from fall 2013 are substantially
similar to results from spring 2014. However, a few interesting
differences and observations emerged:

• While the pattern depicted in Figure 6 obtains for fall
2013 as well, the fall 2013 search consistently relied more
heavily on the individual adjustment neighbors than on the
gradient steps. The individual search starts went on for longer
without getting stuck but also improved more slowly (see
Figures A-7 and A-5, respectively, in the online appendix).

• The overall solution quality in fall 2013 was worse than
that for spring 2014, with the difference becoming particularly
evident after oversubscription is eliminated in Stage 2. See
Table A-2 in the online appendix. We hypothesize that this
difference may be because included in fall is a large set of
courses of which students are required to take exactly one
from the set, where each course in the set has a small target
capacity (10 or fewer seats) and student preferences across the
set are primarily driven only by when the course is offered
(rather than topic or instructor). Consequently, adding or
removing a student from one of these courses has a relatively
large impact on enrollment, which makes fine-tuned pricing
adjustments challenging. Nevertheless, the overall amount of
error for fall 2013 is quite small in absolute terms: 27 seats
and deadweight loss of 0.16%.

• To our surprise, the performance of Course Match on
the spring 2014 data was noticeably better in our early 2016
analysis versus the December 2013 production run reported in
the body of the paper. The number of price vectors explored
and MIPs solved increased by about 60%, from 2.0 million
and 4.5 billion to 3.2 million and 7.1 billion, respectively. The
final solution had error of just three seats and deadweight
loss of less than 0.01%. This difference is attributable to
an improvement in the computational performance of the
Amazon cloud. This appears to be the first documentation of
Amazon increasing the performance of identical compute
instances over time.

In addition to these robustness results reported in the online
appendix, we note as well that Course Match has been running
successfully at Wharton since fall 2013 (six semesters as of the
present writing). The computational performance and solution
quality reported in the present paper are representative of the
performance and quality in subsequent semesters.

6. Economic Results
In this section we summarize the economic performance
results from the fall 2013 and spring 2014 semester runs
of Course Match at Wharton. We begin by describing the
quantitative properties of the allocations themselves and then
provide survey data demonstrating that students were very
satisfied with those allocations.

6.1. Efficiency

Table 3 shows quantitative summary statistics from the fall
2013 and spring 2014 runs. The two semesters had similar
inputs and outputs. One salient difference between the two
semesters was that spring 2014 had many more courses with
maximum capacities above target capacities. The quality
of the final allocation in spring 2014 also appears to have
been higher; its deadweight loss was about one-third of the
deadweight loss of the fall term, although both semesters
had very low deadweight loss in absolute terms—less than
one-fifth of 1% of the total economy in each semester.

Figure 8, panels (a) and (b) show the relationship between
course capacities and prices in the fall 2013 and spring 2014
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Table 3. Quantitative summary statistics from the fall 2013 and spring 2014 allocations.

Fall 2013 Spring 2014

Students 1,650 1,700
Courses 285 344
Courses with maximum above target capacity, i.e., qj < q̂j 78 262
Total capacity overhead (

∑

j �q̂j − qj�/
∑

j qj ) 0.8% 2.1%
Number of courses with demand above target capacity 13 49
Fraction of total capacity allocated 71% 74%
Number of courses with a positive price 154 199
Number of undersubscribed positive price courses 15 18
Deadweight loss as percentage of economy 0.19% 0.07%
Highest course price as fraction of average budget 1.31 0.88

allocations. Each circle represents a course. The color of a
circle is determined by the allocation of the course relative to
its target capacity. Red circles are courses with low allocation
relative to target capacity, white circles are courses that exactly
match target capacity, and blue circles are courses that exceed
target capacity (but do not exceed maximum capacity). The
saturation of the colors reflects the absolute error relative to
target capacities: a class with no students would be dark red,
and a class that fills its maximum capacity would be dark blue.
In each semester there is a weak relationship between course
price and capacity. Furthermore, while most (but not all) of
the courses with allocations below target capacity have a zero
or low price, courses with allocations above target capacity
(blue) occur at all prices and are not concentrated just in the
high-priced courses.

Figure 9, panels (a) and (b) plot the number of seats over
or under target capacity for courses with positive prices and
undersubscription (red circles) or allocations above their target
capacities (blue circles). There is a weak relationship between
the absolute clearing error and course price. Absolute clearing

Figure 8. Course capacities and prices.

(a) Fall 2013
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(b) Spring 2014

Notes. Each circle represents a course. The color of a circle is determined by the allocation of the course relative to its target capacity. Red circles are courses
with low allocation relative to target capacity, white circles are courses that exactly match target capacity, and blue circles are courses that exceed target capacity
(but do not exceed maximum capacity). The saturation of the colors reflects the absolute error relative to target capacities: a class with no students would be
dark red, and a class that fills its maximum capacity would be dark blue.

error is also somewhat limited—never more than five seats.
Furthermore, as one would hope, oversubscription (based on
target capacity) is more common relative to undersubscription
with high-priced courses and less so with low-priced courses.

Table 4 shows how Stage 2 (oversubscription elimination)
and Stage 3 (undersubscription reduction) affect the solution.
In fall 2013, about 34% of course prices are changed to
eliminate oversubscription, while in spring 2014, about 28%
of course prices are changed. As a result of these price
changes, about 23% of students in the fall and 19% of students
in the spring change their course allocations to eliminate
oversubscription. Finally, with undersubscription reduction,
only about 13% of students in the fall and 9% of students in
the spring change their allocations.

Figure 10, panels (a) and (b) show the budget expenditure
by students over the three stages for the fall 2013 and spring
2014 semesters. Each figure consists of three subplots. The
top subplot buckets students by the amount of their initial
budget spent after Stage 1 (price vector search). The middle
subplot shows these buckets after Stage 2 (oversubscription
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Figure 9. Course market-clearing errors and prices.

Notes. Courses in fall 2013 and spring 2014 that either exceeded their target capacities (i.e., they made use of additional max capacity) or had positive price but
were undersubscribed (i.e., they contributed to deadweight loss) are shown. The saturation of the colors reflects allocations relative to target capacities: a class
with no students would be dark red, and a class that fills its maximum capacity would be dark blue.

Figure 10. (Color online) Percentage of budget spent by stage.

(a) Fall 2013, Stages 1–3
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(b) Spring 2014, Stages 1–3
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Notes. The percentage of initial budget spent by students after (Stage 1 price vector search (top panel), Stage 2 over Subscription elimination (middle panel),
and Stage 3 undersubscription reduction (bottom panel). For clarity, students spending less than 50% of their budget are grouped into a single bucket.

elimination), and the bottom subplot shows these buckets
after the completion of Stage 3 (undersubscription reduction).
In Stages 1 and 2, students cannot spend more than 100% of
their initial budget, and while most students spend most of
their budget (say, 90% or more), there remains a large number
of students who spend a smaller portion of their budget. In
Stage 3, students are able to spend an additional 10% of their
initial budget on undersubscribed courses. Nevertheless, fewer
than 15% of students actually spend more than their budget,
which suggests that possible equity concerns associated with
Stage 3 are not significant.

Table 4. The degree of effect of oversubscription elimi-
nation and automated aftermarket on courses
and students.

Fall 2013 Spring 2014

Courses 285 344
Courses changing price in 98 97

oversubscription elimination

Students 1�650 1�700
Students changing allocation in 381 327

oversubscription elimination
Students changing allocation in 222 147

undersubscription reduction
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6.2. Fairness

One measure of fairness is envy—when a student prefers
the allocation received by another student over her own. We
already know that there should be some envy in the Course
Match allocations because Course Match divides students
into groups with significantly different budgets (e.g., all
second-year students get larger budgets than all first-year
students), and even within the same group there can be envy
as a result of variations in the tie-breaking subsidy (though, as
mentioned earlier, that envy is bounded by a single course).
As it is mathematically impossible to design a mechanism that
is completely free of envy, it is not clear how much envy is
tolerable and how much is too much. To provide a benchmark,
it would be ideal to compare the envy in the Course Match
allocation to the envy produced by a competing mechanism,
such as the auction Wharton previously used. However,
because bids are unlikely to represent true preferences in the
Wharton auction, it is not possible to use previous auction data
to determine levels of envy. (However, see Budish and Kessler
2015 for experimental evidence comparing envy between
these two mechanisms.)

As we cannot use envy to measure fairness, we provide
two alternative, but related, measures of fairness that enable
us to compare Course Match to Wharton’s previous auction
mechanism. The first focuses on how evenly seats in the most
expensive courses are distributed among the students, and
the second, called the Gini index, measures how evenly the
“wealth” in this economy is distributed, where the value of a
seat equals its price.

Table 5 shows the percentage of second-year students
with S courses among the most expensive N courses. (We
focus on second-year students because first-year students vary
significantly in the number of courses they desire because
of course requirements and waivers.) Two values of N are
reported, 20 and 40, because the number of seats among
the top 20 courses is approximately equal to the number of
second-year students, and the number of seats among the
top 40 courses is approximately equal to the total number of
MBA students. Because the spring and fall semesters differ in
the types of courses offered and student needs, each Course
Match semester is compared against the same semester in the
previous year that used the Wharton auction. If all students

Table 5. Percentages of second-year students with S
courses among the N highest-priced courses.

S = 0 S = 1 S = 2 S = 3+

Mechanism Semester N (%) (%) (%) (%)

Auction Fall 2012 20 32 43 20 5
Course Match Fall 2013 20 13 71 15 0
Auction Fall 2012 40 14 34 31 20
Course Match Fall 2013 40 4 44 50 2
Auction Spring 2013 20 54 38 8 0
Course Match Spring 2014 20 32 65 4 0
Auction Spring 2013 40 20 42 29 9
Course Match Spring 2014 40 6 52 42 0

want a seat among the top N courses (which is unlikely to be
true, but most students probably have some preference for at
least one of these courses), then an equitable solution would
concentrate the distribution in the S = 1 and S = 2 columns. In
all cases, Course Match concentrates substantially more of its
distribution in those desirable columns than the auction. For
example, comparing the auction in fall 2012 to Course Match
in fall 2013, 63% of students received one or two courses
among the top 20 with the auction, while 86% did with Course
Match. Consequently, with the auction, 32% of students were
excluded from the top 20 courses (S = 05 whereas only 13%
were absent from the top 20 courses with Course Match. And
while no student with Course Match was allocated more than
three seats among the top 20 courses, with the auction, a lucky
5% of students received three or more seats in that set. The
same pattern emerges when we consider the 40 highest-priced
courses and the spring semesters. In sum, with Course Match,
relative to the auction, fewer students are excluded from the
most expensive courses, and very few (if any) students are
able to acquire many seats among those courses.

Instead of focusing on the distribution of seats in the
most expensive courses, it is also possible to measure the
distribution of seats overall. If the value of a seat is taken
to be its price, then the sum of the prices of the seats in a
student’s schedule can be taken as a measure of the wealth
the student has earned from the allocation. Fairness suggests
that wealth should be evenly distributed. The Gini coefficient
measures the inequality of a distribution and is typically used
for measuring income inequality. The Gini coefficient ranges
between 0 and 1: if every person has identical wealth, the Gini
coefficient is 0; if a single person controls all of the wealth,
the Gini coefficient is 1. Hence, wealth is more concentrated
among a few as the Gini coefficient increases.

The interpretation of the Gini coefficient in the context
of income inequality is clear—because it is reasonable to
assume that everyone prefers more income to less, an increase
in the Gini coefficient implies that more of the valuable
resource (income) is assigned to fewer people, which means
less equality. With course allocation, the interpretation of the
Gini coefficient is not as straightforward. It is possible that
a student receives her most preferred schedule even though
the schedule has zero total cost—it just so happens that the
student values courses that are not capacity constrained. Thus,
the Gini coefficient probably overstates the degree of income
inequality. Nevertheless, popular courses are likely to have
higher prices, and so the total cost of a student’s schedule is
a reasonable proxy of the value the economy places on her
schedule.

Table 6 reports the Gini coefficients for the fall and spring
semesters, one with the prices generated by the auction in the
last year it was implemented and the other with the prices
generated by Course Match in its first year of implementation.
The coefficients are calculated for three different student
groupings: only first-year students, only second-year students,
and all students. Recall from Section 4.1 that students are
granted roughly equal budgets within a year but unequal
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Table 6. Gini coefficients of student allocations.

First-year Second-year All
Mechanism Semester students students students

Auction Fall 2012 0.33 0.36 0.54
Course match Fall 2013 0.13 0.22 0.32
Auction Spring 2013 0.25 0.39 0.34
Course match Spring 2014 0.10 0.12 0.15

Note. Fall 2012 allocations are taken as round 5 of the auction.

budgets between years (and that was true with the auction as
well). This systematic unfairness is considered natural in the
course allocation setting at business schools. Consequently,
intrayear Gini coefficients are a better measure of fairness in
this setting than the Gini coefficients of allocations including
both years. By design (and therefore, as expected), the Gini
coefficient for the whole student body is higher than the
intrayear Gini coefficients.

As is evident, Course Match in all pairwise comparisons
with the auction reduces the Gini coefficient, meaning that
Course Match produces an allocation that more evenly dis-
tributes wealth among the students. To calibrate these scores
somewhat (and with the understanding that the Gini coefficient
with course allocation likely overstates income inequality), the
auction’s fall 2012 intrayear Gini coefficients are roughly in
line with the United Kingdom’s post-transfer income distribu-
tion (0.34), while both the fall 2013 and spring 2014 Course
Match allocations have intrayear Gini values lower or much
lower than the country with the lowest post-transfer income
distribution, Denmark (0.24). The spring 2014 schedule, in
particular, has intrayear Gini coefficients that are very low,
approximately 0.1.

6.3. Student Perception

Although Course Match has desirable results in terms of
various efficiency and fairness measures, the ultimate metric
of its success is student satisfaction. Prior to 2013, Wharton
measured satisfaction with the auction course registration
system with a single question on an annual stakeholder survey
given to MBA students. The last year in which the auction was
implemented for course allocation was 2013. In anticipation
of the auction’s retirement, two additional questions were
added to the survey in 2013—one directed toward satisfaction
with the course schedule a student received and the other on a
student’s impression of the fairness of the auction. The same

Table 7. Percentage of 6 or 7 responses on three questions related to course allocation at Wharton.

2010 2011 2012 2013 2014

Effectiveness of the course registration system (1 = poor, 7 = excellent) 43% 43% 34% 24% 53%
I was satisfied with my schedule from {the auction, Course Match} — — — 45% 64%

(1 = very unsatisfied, 7 = very satisfied)
{The auction, Course Match} allows for a fair allocation of classes — — — 28% 65%

(1 = strongly disagree, 7 = strongly agree)

Notes. “Year” refers to the end of the academic year in the spring semester; e.g., 2014 is the academic year covering fall 2013 and spring 2014. Only the
“effectiveness” question was asked in 2012 and earlier. The 2013 results apply to the auction, the last year of its use. The 2014 results apply to Course Match.

questions were asked in 2014 with “Course Match” replacing
“the auction” in the wording of the question.

Table 7 reports the percentage of students responding
with one of the top two scores (6 or 7). With respect to
“effectiveness,” student satisfaction had been decreasing over
time, with the lowest score occurring in the last year of
the auction, but then this measure improved considerably
in 2014, the year Course Match was implemented. Course
Match performed very well on the other two measures as
well—“satisfied with my schedule” increased from 45% to
64%, and “fairness” experienced an even larger increase, from
28% to 65%. These dramatic improvements also provide
indirect evidence suggesting that students were able to report
their preferences to the Course Match system successfully—if
they were not successful in doing so, either because the
language was too limiting or because they had difficulty
“speaking” it, then it is unlikely that satisfaction scores would
be high. In sum, the student survey results provide strong
evidence that Course Match is effective at providing efficient
solutions and increasing perceptions of fairness.

7. Conclusion
Course Match is a large-scale implementation of the approxi-
mate competitive equilibrium from equal incomes mechanism
for course allocation that is capable of producing imple-
mentable (i.e., feasible) solutions within a sufficiently small
lead time by cost-effectively harnessing the power of cloud
computing. The resulting allocation was attractive on quanti-
tative measures of economic efficiency and fairness, such
as deadweight loss and the equality of the distribution of
popular courses. Perhaps most importantly, relative to the pre-
viously used auction mechanism, Course Match substantially
increased student perceptions of effectiveness, satisfaction,
and fairness.

A critical feature for the success of Course Match is its
“strategy-proof” property—a student’s best strategy is to report
her true preferences no matter what preferences other students
report or what capacities are assigned to each course. This
greatly simplifies the student’s reporting task because the
student need not form beliefs about how other students will
“play” or what clearing prices might be for courses. By contrast,
the Wharton auction (as well as all other course-allocation
mechanisms implemented in practice) was not strategy-proof.
For example, if a student desires a course but believes that
it will have a zero clearing price, then the student should
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rationally submit a low bid and save tokens to bid on other
courses. However, the student may make a mistake and not
receive the course she desires if the clearing price turns
out to be higher than expected. This bidding mistake is not
trivial, and it could even lead a student with ample tokens to
receive zero courses. Such errors do not happen with Course
Match, because Course Match effectively bids on behalf of
students after all of the clearing prices have been revealed.
Hence, Course Match never “bids more” than the clearing
price (which would waste budget tokens) nor “bids less”
than the clearing price for a desired course (thereby losing
the seat). Furthermore, although Course Match is able to
solve the MIP that yields a student’s best schedule given the
reported preferences and price vector, it is highly unlikely a
student would be able to identify the best schedule with the
same information consistently; i.e., computers are better than
humans at solving MIPs. In sum, Course Match performs
all of the tasks that are best performed by a computer (e.g.,
finding a price vector and assigning seats to students given
that price vector) while leaving the students the one task the
computer cannot do, i.e., reporting their own preferences.
Consequently, a substantial amount of human computation
effort (e.g., forming beliefs, choosing bids) is eliminated and
replaced with cloud-based computing power.

The cliché “garbage in, garbage out” applies with Course
Match—while the Course Match mechanism has many desir-
able theoretical properties, if the preference language given to
students is not sufficiently rich (i.e., it does not allow students
to express critical preferences) or if students are not able
to “speak” this language (i.e., they cannot use the language
to correctly report their preferences), then Course Match
may not yield desirable results. We are not able to provide
direct evidence of the quality of the Course Match preference
reporting language and user interface, but the high overall
student satisfaction scores provide indirect evidence that the
Course Match language is sufficiently rich and easy to use.
See also Budish and Kessler (2015) for laboratory evidence
on the efficacy of the reporting language.

We are able to document that Course Match is a superior
mechanism for taking a given set of courses and allocating
them to students. Another approach to improve student
satisfaction is to change the set of course offerings, i.e., which
courses are offered, which classrooms they are offered in, and
when they are offered. Given that students report their true
preferences to Course Match, it is possible to observe the
demand for each course that would occur if there were no
capacity constraints. This enables the school administration
to distinguish between two courses, each with 60 seats and
60 students enrolled but one that would have 200 students
and the other that would have 20 students in the absence of
capacity constraints. The course with the higher demand is
far more popular, even though it has the same enrollment as
the less popular class, which must have full enrollment only
because some students were not able to get into their more
preferred courses (i.e., 40 of the 60 students enrolled would
not have included the course in their most preferred schedule).

It is plausible that the effective use of the preference data
available through Course Match could lead a school to make
smarter decisions about its course offerings, which could lead
to further substantial gains in student satisfaction.

We do not claim that the Course Match computational
architecture is “optimal.” Indeed, an important question left for
future research is whether there are better approaches to finding
approximate market-clearing prices than that described here.
We do show, however, that the Course Match computational
architecture works at Wharton. To borrow a common analogy
(e.g., Roth 2002), ours is an exercise of engineering rather than
physics. Additionally, some back-of-the-envelope calculations
suggest that even the largest course allocation problems are
within reach of the Course Match architecture. For example,
The Ohio State University has about 60,000 students at its
main campus, compared with 1,700 students at Wharton,
and thousands of courses each semester compared with up
to 350 courses at Wharton. However, whether students are
at a large school or a small school, they are likely to report
preferences for approximately 15–30 courses each semester,
given that they are likely interested in taking about -four
to five courses each semester. Because a MIP solver can
immediately discard all courses that a student has no interest
in taking, the difficulty of solving a student’s MIP is likely to
be no more difficult at Ohio State than at Wharton. There are
601000/11700 ≈ 35 times as many students at Ohio State than
at Wharton, however, and thus 35 times as many MIPs to solve
at each price vector. It is unclear whether the price search
problem is harder or easier at Ohio State—it could be harder
because there are considerably more courses, but it could be
easier because there is likely to be less overlap in demand for
those courses (e.g., courses at the dental school are effectively
a separate market from courses at the liberal arts school)
and maybe because fewer courses are likely to be capacity
constrained. If we assume that the search problem at Ohio
State is the same difficulty as the search problem at Wharton,
and incorporate the 60% speedup of Amazon Web Services we
observed between late 2013 and early 2016, we would need on
the order of 35/106 ≈ 20 times as much computational time to
solve the Ohio State problem as was used for the spring 2014
Wharton production run. This is a lot of computational power
but is certainly feasible given the current scale of Amazon
Web Services. Thus, even the largest realistic problems are
within reach of the Course Match architecture. Furthermore,
other applications of the combinatorial allocation problem,
such as workforce scheduling, are likely to be much smaller
and therefore easily handled by the Course Match architecture.

Supplemental Material

Supplemental material to this paper is available at https://doi.org/10
.1287/opre.2016.1544.
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Endnotes

1. The original Othman et al. (2010) procedure did not limit
the number of neighbors in this way (i.e., instead of creating
min8C1409 neighbors, it created C neighbors). Our exploratory
analysis suggested that on Wharton-sized problems, bundling
neighbors yielded more search starts that lowered error faster
and terminated faster. Bundling neighbors provides two ways
to accelerate a search in its intermediate stages: reducing the
computation required at each candidate price vector and making
several steps simultaneously.
2. The argument that Course Match formally satisfies the incentives
criterion of strategy-proof in the large (Azevedo and Budish 2015) is
as follows. In the limit as the market grows large, each student i
regards both the prices p∗ from Stage 2 and his or her initial
budget �i as exogenous to their own report. Moreover, in the limit,
as the market grows large, the probability that Stage 3 affects
student i’s allocation goes to zero, because market-clearing error
goes to zero as a fraction of the economy as the economy grows
large. Therefore, in a large market, the student can do no better than
to act as a price taker and report her preferences truthfully. We also
believe that Stage 3 is unlikely to affect students’ incentives to report
truthfully in small markets, because it seems extremely unlikely
(if not impossible) that a student could predict which courses will
have market-clearing error, and even with this information it is not
obvious how, if at all, to strategically misreport.
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