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In many industries a supplier’s total demand from the retailers she supplies frequently exceeds her capacity. In these situations, the
supplier must allocate her capacity in some manner. We consider three allocation schemes: proportional, linear and uniform. With
either proportional or linear allocation a retailer receives less than his order whenever capacity binds. Hence, each retailer has the
incentive to order strategically: retailers order more than they desire in an attempt to ensure that their ultimate allocation is close to
what they truly want. Of course, they will receive too much if capacity does not bind. In the capacity allocation game, each retailer
must form expectations on how much other retailers actually desire (which is uncertain) and how much each will actually order,
knowing that all retailers face the same problem. We present methods to find Nash equilibria in the capacity allocation game with
either proportional or linear allocation. We find that behavior in this game with either of those allocation rules can be quite
unpredictable, primarily because there may not exist a Nash equilibrium. In those situations any order above one’s desired quantity
can be justified, no matter how large. Consequently, a retailer with a high need may be allocated less than a retailer with a low need:
clearly an ex post inefficient allocation. However, we demonstrate that with uniform allocation there always exists a unique Nash
equilibrium. Further. in that equilibrium the retailers order their desired amounts, i.e., there is no order inflation. We compare

supply chain profits across the three allocation schemes.

1. Introduction

When demand is uncertain and capacity is costly, a
supplier will not build an amount of capacity sufficient to
cover every possible demand realization. As a result, on
occasion retailers (the supplier’s customers) will demand
more than she can deliver. In such a setting, the supplier
must employ a mechanism to allocate the available ca-
pacity among the retailers. Proportional allocation is
perhaps the most intuitive scheme for dividing capacity:
If a retailer’s order 1s x% of total orders, he receives x%
of available capacity. Other schemes exist. With linear
allocation, the difference between total orders and ca-
pacity is divided by the number of retailers, and this
amount is subtracted from each order. (If a negative al-
location results for someone, that retailer receives a zero
allocation and the process is repeated with the remaining
retailers). Both linear and proportional allocation ensure
that every retailer receives less than his order when ca-
pacity is allocated. Further, with each of these schemes a
retailer can ensure a larger allocation if he orders a larger
quantity. Since retailers realize that allocation is a pos-
sibility, they all have an incentive to inflate their orders
above their desired allocation. Hence, both linear and
proportional allocation are ‘‘order-inflating” mecha-
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nisms. In contrast, uniform allocation is a “‘truth-induc-
ing”” mechanism, i.e., under uniform allocation the re-
tailers order only their desired amounts, no matter the
behavior of the other retailers or the amount of available
capacity. With uniform allocation the supplier equally
divides the available capacity among the retailers; if any
retailer orders less than his equal share, he receives his
order and the remaining capacity is allocated equally
among the remaining retailers.

Allocation mechanisms have been employed in indus-
tries ranging from automobiles [1], to pharmaceuticals [2],
to toys [3] but the issue has received little formal study.
Lee et al. [4] recognize that proportional allocation cre-
ates an incentive for retailers to raise their orders above
their desired allocation. However, they do not determine
by how much the retailers will inflate their orders or if
order inflation is at all predictable (i.e., if there exists a
Nash equilibrium in order quantities). Cachon and
Lariviere [5] delve deeper into the issue of capacity allo-
cation. They identify several different allocation schemes
and demonstrate that some allocation schemes induce
retailers to inflate their orders whereas others do not.
Since linear and proportional allocation create complex
behavior, they assume the supplier implements relaxed
linear allocation. That scheme, while computationally
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tractable, allows a retailer to “receive” a negative allo-
cation. implying that it cannot be implemented in prac-
tice. The allocation schemes we consider can be
implemented in practice.

In our model there is one supplier and two retailers.
Retailers face one of two possible downward sloping
linear demand curves. Each retailer knows his own de-
mand and thus his desired allocation. However neither
retailer knows the other’s demand. Hence, the retailers
are not necessarily sure whether capacity will bind and
may inflate their orders above their ideal allocations.

We show that behavior in this game is quite complex
with either linear or proportional allocation. For many
capacity levels, there does not exist a pure strategy Nash
equilibrium in order quantities. In these settings a retailer
can rationalize any order above his ideal amount, no
matter how large. There can also exist the possibility of
multiple Nash equilibria; the players consequently cannot
be sure that they are playing the same equilibrium. For
linear allocation. we show that for any set of model pa-
rameters there exists a range of capacity values over
which multiple equilibria are feasible. While it is possible
to explicitly evaluate all equilibria with linear allocation
(if they exist), with proportional allocation it is necessary
to conduct some numerical search to find equilibria.
Unfortunately it cannot be guaranteed that a numerical
search will find all (or even any) of the equilibria with
proportional allocation.

These games are analytically complex primarily be-
cause a player’s profit is not necessarily unimodal in his
order. even though a player's profit is unimodal in his
allocation. Hence, a player’s best reply correspondence,
the set of optimal orders given the behavior of the other
retailer. is not necessarily convex. For example, it may be
optimal to order either 8 or 12 while an order of 10
vields sub-optimal profits in expectation. Convexity of
the best reply correspondence is required by the standard
proofs for the existence of a pure strategy equilibrium
[6.7].

There is another problem. Existence theorems also re-
quire convex strategies; we cannot allow the players to
choose an infinitely high order although it is rather arti-
ficial to suppose that the supplier places an « priori limit
on the size of retailer orders. Without this limit, however.
the capacity allocation game can degenerate into “who
can name the largest number,” which clearly has no
equilibrium. (No matter what order you submit, I can
always find a larger order). In a numerical study we find
that the lack of a Nash equilibrium is common with either
linear or proportional allocation, especially as capacity
becomes very tight. We also find that while multiple
equilibria may exist under either scheme, this appears to
be a less common problem.

Behavior with uniform allocation is sharply different:
there always exists a unique Nash equilibrium with each
retailer ordering his ideal allocation, i.e.. there is no order
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inflation. We compare supply chain profits with uniform
allocation to supply chain profits with either linear or
proportional allocation. We show that when there exists
an equilibrium with either proportional or linear alloca-
tion, supply chain profits with those schemes are gener-
ally somewhat higher than with uniform allocation. This
occurs because order inflation increases the supplier’s
profits, i.e., due to order inflation the supplier expects to
sell a greater fraction of her capacity. Further, under any
of those schemes the allocation of capacity across the
retailers is reasonable, i.e.. the highest need retailer gen-
erally receives the highest allocation. We conclude that
when there exists a linear or proportional allocation
equilibrium, order inflation does not create tremendous
supply chain inefficiency. and may even benefit the supply
chain.

However, our conclusion is different when there does
not exist an equilibrium with either of the inflation-in-
ducing allocation schemes. In those situations we expect
rampant order inflation to lead to arbitrary allocations:
since his opponent can justify any order (no matter how
large) a retailer might receive nearly all of capacity or a
very small allocation for any fixed order. The retailers’
profits are thus significantly lower than what they would
be with uniform allocation, but since the retailers’ ex-
pected orders with order inflation are higher than their
orders with uniform allocation, the supplier’s profits are
significantly higher. Whether the supply chain is better off
with order inflation relative to uniform allocation de-
pends on the how the profits are allocated in the chain.
The supplier holds most of the profits when the wholesale
price is relatively high, in which case order inflation
benefits the supply chain. However, with a relatively low
wholesale price most of the chain’s profits are at the retail
level. In that case order inflation significantly reduces
supply chain profits.

The next section details the model. Section 3 outlines a
method to find equilibria when the supplier implements
linear allocation and Section 4 discusses the search for
equilibria with proportional allocation. Section 5 ana-
lyzes uniform allocation. Section 6 presents the numerical
study. Section 7 discusses the results and suggests possible
extensions to the model. The last section concludes.

2. Model

This section explains the rules of the capacity allocation
game. There are two players. Each is a retailer of a single
good produced by one upstream supplier. A retailer can
be one of two types. A “*high™ type retailer expects greater
demand for the good than a “low™ type retailer. Specifi-
cally, a type ¢ € {/. h} retailer faces a downward sloping
linear demand curve,

Pr = Zr — 4.
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where ¢, is the number of units the retailer sells, p, is the
price per unit the retailer receives, and z, = x € (0. 1),
zp = 1. This model of demand is quite reasonable: a re-
tailer can increase sales only by lowering its price, and a
retailer with high demand expects to sell more at any
given price than a low demand retailer.

The retailers” demands are independent, i.e.. they are
local monopolists. For example, the retailers may be lo-
cated in significantly distant geographic regions. Hence,
the retailers do not compete against each other in the
consumer market. (Cournot and Bertrand competition
are two well known forms of competition between re-
tailers in the consumer market, so neither of them apply
in this model). Instead, the retailers will only compete for
scarce capacity through their orders.

Each retailer knows his own type but does not know
for certain the other’s type. However, each knows that the
other retailer is a high type with probability p € (0, 1) and
a low type with probability (1 — p). We assume that re-
tailer types are independent. Thus, whether retailer / is a
high or a low type, he expects retailer j to be a high type
with probability p.

In the game’s only move, each retailer submits an order
to the supplier. The supplier initiates production only
after receiving the orders. She can produce up to K units,
and the marginal cost of production is normalized to
zero. The supplier sells units to the retailers at a constant
per unit price w. If total orders are less than K, the sup-
plier produces just enough to fill the orders. However, if
orders exceed K. the supplier produces K and implements
an allocation rule to divide her production between the
retailers, Once the allocation is announced, the retailers
must purchase their full allocation and may not return
goods to the supplier. However, the supplier cannot al-
locate more to a retailer than he has ordered. Three al-
location mechanisms are considered. linear, proportional
and uniform allocation. (The details of these allocation
mechanisms are explained later).

Let m,(a) be a type ¢ retailer’s profit when he is allo-
cated a units,

mla) = (z, —a — w)a.

where it is assumed that the retailer must sell all of the
units he has been allocated. The retail price is then neg-
ative when @ > z,. In practice, a retailer should withhold
stock from the market when « is greater than z,/2, the
revenue maximizing sales level. Introducing that as-
sumption has little theoretical value but does add an
additional layer of computational effort. (Whether a re-
tailer can withhold stock or not, a retailer’'s profits are
strictly concave in his allocation, so that assumption has
no qualitative impact on the results).

Define a player’s strategy as a set of order quantities,
one for each type. Let X = {x;.x,} be retailer {’s strategy,
where x, > 0 is the amount retailer ;i orders when he is
type ¢. Similarly, let ¥ = {y,. 3} be retailer j’s strategy.
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(It is convenient to assume that a player chooses an order
quantity for each of his possible types even though he
will know his type before submitting his order). A pure
strategy Nash equilibrium is a pair of strategies such that
neither player ever has a profitable unilateral deviation.
All parameters of the game (outside of the retailers’
types) are common knowledge. For example, the retailers
know the supplier’s capacity and the allocation mecha-
nism that may be implemented. Players are risk neutral
so they choose their strategies to maximize their expected
profits.

A type ¢ retailer’s ideal allocation is a, = (z, — w)/2.
Assume w < z, so even a low type desires a positive al-
location. In this game each retailer’s challenge is to obtain
an allocation as close to a, as possible.

3. Linear allocation
When the supplier implements linear allocation a retailer

ordering x is allocated a(x.y) when the other retailer or-
ders y, where

X x+v<K,
alx.y) = (x—v+K)/2 x+v>K. x—y <K
T K x+yv>K. x—v>K.
0 x+y>K. y—x>K.

In words, a retailer receives his order whenever the sum of
all orders is less than capacity, K. When orders exceeds
capacity, half of the difference between total orders and
capacity is deducted from each order, assuming the de-
duction is less than the smallest retailer order. If the de-
duction is greater than the smallest retailer order, that
retailer receives a zero allocation and the other retailer
receives all of the capacity.

It is straight forward to show that if the retailers
were to report their types truthfully, linear allocation is
the only allocation mechanism that would maximize
total retailer profits. This is clearly a desirable property,
and it is our primary motivation for studying linear
allocation.

3.1. Reaction correspondence

Suppose retailer i expects that Y will be retailer j's
strategy. Define #(Y) as retailer j’s reaction correspon-
dence, i.e., the set of orders that maximizes retailer i’s
profits when his type is ¢, TL,(x;. Y),

[(x. Y) = (1 = p)m(alx.v)) + prlalx.w)).

The first step in the analysis of r,(Y) is to restrict retailer
i's expectations of retailer j’s strategy. While there are no
a priori restrictions on retailer i's expectation, for the
purpose of equilibrium analysis there are clearly some
expectations that are unreasonable. For example, it is
unreasonable to expect that a retailer will order less than
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his optimal quantity or that a high type will order less
than a low type. (All proofs are in Appendix A).

Lemma 1. /n any equilibrium a, < x, and a, < y,. Further,
x; < xp and y; < .

There are several situations in which it is straightforward
to determine retailer i's optimal order. First, suppose
a; + v, < K. Retailer i can expect to receive his desired
allocation, regardless of retailer j's type; he should simply
order a;. Second, suppose capacity is quite restrictive,
K < a,. Retailer 7 wants all of the capacity since even that
quantity is less than he desires. The retailer can achieve
that allocation with an order no less than K + y;. (This, of
course, would mean that the other retailer would receive a
zero allocation).

Finding a retailer’s optimal order quantity for inter-
mediate capacities, @, < K < a, + y;, 1S more complex
because his profit function is not necessarily (or even
likely) unimodal in his order quantity. A solution to this
problem is to divide a retailer’s profit function into
multiple intervals such that the profit function is uni-
modal within each interval. Locally optimal orders for
each interval are compared to yield the set of globally
optimal orders.

Consider retailer i’s marginal profit if he knew that
retailer j would order y,

0 x, <y-K,
7, —w — 2x,
y_Ker <}’+K:

om(a(x.y))

X <K-—y,

8_7(} (3[ — X+ V— /2
K<x, <y+K, K—y<x,
0 V-}—K<\’,

In the first case, retailer i receive a zero allocation. In the
second, he is allocated his order. In the third, he is allo-
cated less than his order but less than K. In the final case,
he is allocated all of the capacity.

Of course, retailer ¢ does not know retailer j's order
for certain. Hence, depending on whether retailer ; is a
high or low type, retailer / faces the possibility of the
eight different allocation scenarios that are listed in
Table 1.

For each scenario, we can determine retailer /s ex-
pected marginal profit:
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Table 1. The potential scenarios

Scenario Retailer j is a low type Retailer j is a high type
1 a(x..v;) = x; 0 < a(x.wm) <x

2 0 <alx,.y) <x 0 < alx,.m) <x

3 alx;..y) =K 0 <alx.y) <x

4 0 <alx.v)<x a(x;. ) =0

5 alx,. v1) = x; alx;.vy) =0

6 a(x,, ) =0 a(x;,vy) =0

7 a(x,.y)) =K alx,.yy) =0

8 a(x,.y) =K a(x, ) =K

scenarios listed above while the last case corresponds to
the last three allocation scenarios. For the first five cases,
second order conditions confirm the profit function is
strictly concave in retailer i’s order. Thus retailer i’s best
order within each interval either satisfies the first order
condition or equaks an interval boundary. Let r/(Y),
r2(Y), (Y) and r#(Y) be the solutions to the first order
conditions in the first four cases in (1), ignoring the
boundaries of the intervals,

2z —w) = plz + K —w—y
Ay) = 2= ZSBp W)

r(Y) =z —w—K+y+p —»),
rf(Y) =zi—w— K+ w.
RY)=z-w—K+y.

The next theorem., indicates that in the intermediate ca-
pacities an optimal order must satisfy one of the above
first order conditions. i.e., none of the interval boundaries
are optimal.

Theorem 2. In the capacity allocation game
a a,+y, <K,
{x Er,'(Y),r (Y).r,
X = arg max,, ,(x,. Y)}
{x:x>K+w} K<a,.

NY), A {YY

Y =
ri(¥) a, < K < a, + .

So for intermediate capacity levels the set of optimal or-
ders is a subset of {r!(¥),r2(Y).r(Y).#*{Y}}. Since this

max{K —y,yn — K} <x, <K+,
max{y; + K,y —K} <x, <y +K,
max{y; —K.K—y} <x, <min{y; + K.y, —

K},

C(1=p)(¢,—x0) +p(d+3n—K))/2 —K<x <K-y,
((1- p)(dbﬂ’ K)+p(¢,+y—K))/2
= J (Pld +3m=K))/2
) ((M=p)(¢,+3 —K))/2
(l P, —x1)

where ¢, =z, — w — x, and x, > q, is assumed throughout.
The first five cases correspond to the first five allocation

—K <x,<min{K -y, 3 —K},
otherwise,

1S not a convex set, the set of optimal orders is not
convex.
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3.2. Equilibria

This section identifies pure strategy Nash equilibria in the
capacity allocation game with linear allocation. There are
some cases in which this task is simple. Suppose capacity
is ample. K > 2ay,. Each retailer could order ¢, and be
assured of receiving a,. A retailer could never do better,
so this is the unique Nash equilibrium.

Suppose capacity is quite tight, K < a;. Neither high
type retailer is ever satisfied. To secure the full capacity,
each high type will try to order K more than the other
high type retailer. Hence, the game reduces to “who can
name the largest number,”” and naturally there is no Nash
equilibrium. The absence of an equilibrium is also easy to
identify at a possibly higher capacity level. Suppose
K < 2a;. In that case, the low type retailer with the
smaller order always receives less than «;, and so always
has an incentive to raise his order, thereby destroying any
possible equilibrium.

The remainder of this section assumes that capacity is
at an intermediate level, i.e., K € (max{2a;,a,}.2a;). The
search for equilibria begins by eliminating some orders
from consideration. The next lemma implies that in
equilibrium each retailer type must expect to receive a
positive allocation.

Lemma 3. There does not exist a Nash equilibrium in which
xp 2 K4y, o v > K+ x;.

The previous lemma is used to obtain the next result.
Theorem 4. In any Nash equilibrium x, € {r}(Y),r?(¥)}.

From Theorem 4, it follows that in equilibrium some
retailer must expect to receive his order for some real-
ization of types.

Lemma 5. There does not exist a Nash equilibrium in which
every type expects capacity to bind ahvays.

So what remains as a possible Nash equilibrium? We
focus on symmetric equilibria, i.e.. X = Y. (Asymmetric
equilibria are discussed in Appendix B). Two types of
symmetric equilibria are possible.

In a Type | equilibrium capacity binds only when there
are two high type retailers. Let X~ = {xj.x;} be this
equilibrium. To be consistent with expectations. it must
follow that 2x; > K and x; +x; < K. Consider the fol-
lowing candidate equilibrium

- . _Q2=p)l—w) — pK
X;=a. x,= 20 p) . (2)

The low type retailer orders his desired allocation be-
cause it expects to receive this allocation. The high type’s
order is the solution to xj = r}(X™*). which is the optimal
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order assuming capacity binds only when there are two
high types. Before this candidate can be proclaimed a
viable equilibrium, a pair of conditions must be checked.
First, it must be confirmed that the expectations indeed
hold, i.e., 2x; > K and x} +x; < K. Second. it must be
confirmed that the high type retailers are indeed choosing
a globally optimal order, ie., x}; = (X*). If both
those tests are passed, then the candidate is indeed in
equilibrium.

Note that expectations place bounds on the range of
capacity values over which a Type | equilibrium is viable.
Specifically, for such an equilibrium to exist, it must be
that 2a, > K > K, where:

(1—2)p
2(4-3p)

It is straightforward to show that X is increasing in p and
goes to 2a; as p goes to one. Thus the range of capacity
values over which a Type 1 equilibrium is viable shrinks
and eventually disappears as the probability of a high
type realization increases. Further, for positive values of
p. K1 > a; + ap; the equilibrium can collapse when a low
type anticipates capacity binding even though in truth
there is always sufficient capacity given that one retailer is
a low type.

In a Type 2 symmetric equilibrium capacity binds
whenever there is a high type retailer. Let X** = {x;*.x;*}
be this equilibrium. Given the expectations, it must hold
that 2x;* < K, and x}* +x;* > K. The candidate equilib-
rium is found from the solution to the following equa-
tions

Ki=a +ay+

X=X} X = X

which is

W 2= w)Fp(l == 2(K4+x—w)+p (K +x—w)

h 4(1—py "

401 —w)+2(z—w) — 4K + p(2K — 3(1 + 2 — 2w))
41 -p)’

*¥

Xp =

P (K +x—w)
4(1 - p)*

As before, this candidate must pass two tests. First, the
expectations must indeed hold and second. each retailer
must indeed choose a globally optimal order, x}* =
FAX).

Again expectations impose limits on capacity, K> >
K > K, where

= (I—2)p
K: =a;+ay + .
"2 )
1_
K, =2a; + U =2p
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Clearly K5 > 2a,. Previously we had said that no equi-
librium could exist if capacity were insufficient to satisfy
two low types. Now we see that either type of equilibria
collapses at a higher capacity in a nontrivial problem (i.e.,
if p>0). In addition. it is simple to show that both
bounds go to 2a, as p goes to one. As with Type 1
equilibria. the range over which Type 2 equilibria are
viable collapses as the chance of a high type retailer in-
creases. Finally note that K> > K, for all admissible val-
ues of p. Thus for any set of model parameter values there
will exist a range of capacity values such that both types
of equilibria are viable.

Although two possible symmetric equilibria have been
identified. there is no assurance that either type exists. In
fact, there is no assurance that any pure strategy Nash
equilibrium exists. The standard proof to demonstrate
existence of pure strategy Nash equilibria requires con-
vex reaction correspondences [6]. This requirement is
satisfied when pavoft functions are concave but the
previous section has shown that the payoff functions in
this game are not necessarily concave so the reaction
correspondences are not necessarily convex. Of course, it
i1s possible that either type of symmetric equilibrium
exists. Further, it is even possible that both symmetric
equilibria exist. Hence. there are two reasons why play
in this game can be quite unpredictable. First, there may
be no pure strategy Nash equilibrium, so no order
corresponds to an equilibrium order. Second, there may
be multiple equilibria, so each player will be uncertain
whether they expect the same equilibrium as the other
player.

While it can be difficult to predict play in this game, we
have the following result regarding the supplier’s influ-
ence on retailer behavior in either of the two possible
symmetric equilibria. The proof is straightforward and
therefore omitted.

Proposition 6. With either symmetric Nash equilibrium, the
supplier’s expected demand is decreasing in her capacity.

As observed in Cachon and Lariviere [5], a supplier facing
the prospect of a flood of orders should not necessarily
scramble to build more capacity because building addi-
tional capacity in fact lowers her demand.

4. Proportional allocation

When the supplier implements proportional allocation a
retailer ordering x is allocated a(x,y) when the other re-
tailer orders v, where

, x
a(x.y) = mm{x. K}.
xX+y

Like linear allocation, proportional allocation is con-
ceptually simple and easy to implement. Unlike linear
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allocation, proportional allocation is commonly used in
practice. We conjecture that several factors explain the
prevalence of proportional allocation. First, it may be the
most intuitive allocation scheme. It is probably the first
and only algorithm most people think of when they need
to determine an allocation. Second. proportional alloca-
tion seems equitable possibly because it never gives any
retailer a zero allocation. (Recall, a retailer may receive
nothing under linear allocation). However. as already
mentioned, proportional allocation does not maximize
the sum of retailers™ profits in our model if the retailers
were to order their desired quantities. Therefore, we
study proportional allocation only because of its preva-
lence in practice. Surprisingly, this is the first formal
analysis of a game in which proportional allocation is
implemented.

4.1. Reaction correspondence

Define r,(Y) as a type ¢ retailer’s optimal order if he ex-
pects that Y is the other retailer’s strategy. As with linear
allocation, evaluation of »(Y) is considered only for
reasonable expectation. i.e.. v, > a, and y; <y,. (The
proof is analogous to that of Lemma 1).

As with linear allocation. when K — yy, > q,. retailer i
can order his desired allocation a4, and be assured of re-
ceiving it. At the other extreme, when K < a,. retailer i
should submit an order for an infinite quantity because he
would be happy receiving all of capacity. The remainder
of this section assumes a, < K < a, + y, so retailer / ex-
pects that capacity might bind but does not want all of it.

The first step in the search for an optimal order is to
identify a closed interval in which all profit maximizing
orders must exist.

Theorem 7. A/l profit maximizing orders lie in the interval
[, 7], where 7 = ¥f(w). 1, = i (v) and

FON Z — W
’zO’)—Jm-

Retailer i's profit function is not necessarily unimodal
over the interval [r,.7]. However, a numerical search
quickly reveals the optimal order quantity in the interval.
To assist in the search, it is possible to identify strictly
concave sub-intervals.

Lemma 8. Retailer i’s profit function is strictly concave

over the intervals [r,. min{K — .7} and [max{r,.
K — v }.7]. where
. K+ (x—w)
V=V ———m.
YK (x—w)

With linear allocation we identified closed form local
optima and then searched over that small set to find the
set of globally optimal orders. In principle, an analogous
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procedure could be applied with proportional allocation.
However, as demonstrated by the computer output of a
common algebra software package. the closed form local
optima are extremely cumbersome. Hence, we choose 1o
implement a numerical search over a closed interval that
is known to contain the globally optimal orders.

4.2. Equilibria

As with linear allocation, when K > 2q,, every retailer
can order his desired quantity and receive it. so that is the
unique equilibrium. When K < max{a;.2a,}, some re-
tailer always has an incentive to raise his order and no
equilibrium exists.

As with linear allocation, two types of symmetric
equilibria are possible with proportional allocation. Re-
call. in a Type 1 equilibrium only the high types inflate
their orders. With proportional allocation it is possible to
determine explicitly a candidate equilibrium for this case.

Theorem 9. If there exists a Type | pure strategy equilib-
rium with proportional allocation (only high type retailers
order more than their desired allocation),then it is sym-
metric and the high type retailers order

o (I=w [ 2pK(l —w— K
X;I—},rh:%<l+\/l+ p ( i ))

(1= p)(1 —w)?
The previous theorem presents a candidate equilibrium.
To in fact be an equilibrium. it must ‘hold that
X, +a; < K. so that each retailer indeed has the correct
expectation that capacity binds only when there are two
high type retailers. It must also hold that each retailer
chooses a globally optimal order.

With a Type 2 symmetric equilibrium all retailers in-
flate their orders. However, the solution even to a can-
didate equilibrium is quite cumbersome. Hence, we
propose a search for this equilibrium via iterative appli-
cation of the reaction correspondences. (This search may
also find asymmetric equilibria, if they exist). The search
proceeds with the following steps:

(1) Choose an initial vector of orders, {{x;. xs},
{vi.vu}}. Set the variable count to zero.

(2) Store in memory the current vector of orders. In-
crement count by one.

(3) Evaluate retailer s best response orders for each
type (low and high) and update the vector of orders.

(4) Evaluate retailer ;'s best response orders for each
type (given the updated vector of orders from the
previous step) and update the vector of orders.

(5) Compare the current vector of orders with the one
stored in Step 2. If the vectors are the same (within
a tight tolerance). stop; an equilibrium has been
found. If they are not the same and the maximum
retailer order exceeds a large threshold (say one
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million times a;), or if count is greater than a large
constant (say 1000), stop; assume the procedure will
not find an equilibrium. Otherwise, go to Step 2.

The above procedure should be run for several initial
vectors. We suggest the vector of truthful orders and the
three order vectors corresponding to the three possible
candidate equilibria with linear allocation, i.e.. (2). (3)
and the asymmetric equilibrium candidate discussed in
Appendix B. In Step 5, the “exit without finding an
equilibrium™ conditions are chosen because (1) it is as-
sumed that extremely large orders just create a perpetual
cycle of ever increasing orders and (2) an equilibrium
probably doesn’t exist if there is no convergence after a
large number of iterations.

Even though it is not possible to « priori evaluate
equilibria with proportional allocation. it is possible to
show that, as with linear allocation, the supplier’s ex-
pected sales will decline in her capacity. Again, the poor
supplier faces the paradox that her potential sales are
highest when she is unable to completely serve the
market.

Theorem 10. With any equilibrium under proportional
allocation, the supplier's expected sales are declining in
her capacity.

4.3. Behavior without an equilibrium

Suppose the supplier implements proportional allocation
but there is no equilibrium in order quantities, i.e.. any
order can be justified so rampant order inflation can be
expected to occur. Hence, it is very likely that orders will
indeed exceed capacity, which means that the supplier’s
sales will probably equal K and her profit will equal wK.
Further, with runaway order inflation. it can be expected
that the allocation of inventory between the two retailers
will not reflect their true needs. For example, it is possible
that even though one retailer orders substantially more
than K, the other retailer might submit a significantly
larger order, giving the first retailer nearly a zero alloca-
tion. Hence, it is possible that a high type retailer receives
nearly a zero allocation while a low type retailer receives
nearly all of capacity.

To provide some indication of the supply chain’s per-
formance when there is no equilibrium, we assume that a
retailer’s expected profits, &,. equals his profits when his
allocation is uniformly distributed on the interval 0. K],

K
| 5
T, = E/ n(a)da = a, K — K- /3.
0

In other words. a retailer assumes that no matter what
order he submits, it is equally likely that he will be stuck
with all of capacity (because the other retailer might order
significantly less) or that he will be left with no capacity
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(because the other retailer might order substantially
more). The above could be considered a lower bound on a
retailer’s profits since in practice retailers would probably
restrain their level of order inflation somewhat (for rea-
sons that we don’t explicitly model), thereby reducing the
chance that a retailer received either a very small or a very
large allocation.

Overall, let II be an estimate for supply chain profits
when there is no equilibrium with proportional allocation,

I = wK +2((1 — p)m; + pmy)- (4)

5. Uniform allocation

With uniform allocation the supplier evenly divides its
capacity between the two retailers. If this amount exceeds
one retailer’s order, then the difference is allocated to the
second retailer. Of course. that second retailer will not be
allocated more than his order either. Formally, a retailer
ordering x is allocated a(x.y) when the other retailer
orders v, where

X x+y<K,
min{x,K/2} x+y>K, x<y,
min{x,max{K/2.K —-y}} x+y>K. x>y.

alx,y)=

With uniform allocation there is no incentive for either
retailer to order any more than his desired allocation. To
explain, suppose retailer i orders x;, > a,. If capacity does
not bind, retailer / is better off ordering a,. If capacity
binds and x, < y. then retailer i receives min{x,, K/2}. If
a, < K/2. then the retailer would be better off ordering a,.
If a, > K/2. then the retailer is indifferent between or-
dering x, and a,. Finally, if capacity binds and x, > y, then
retailer i either receives more than desired (so ordering a,
would be preferred) or the retailer receives less than «, but
would receive that amount for any order a, or greater (so
again ordering a, is optimal). To summarize, with uni-
form allocation the retailer can only raise his allocation in
situations for which he does not want to increase his al-
location. Ordering one’s desired amount is an extremely
robust strategy: it is optimal no matter the value of K or
the strategy used by the other retailer. It follows imme-
diately that each retailer ordering their desired allocation
is the unique Nash equilibrium with uniform allocation.
(See Sprumont [8], for other properties of uniform allo-
cation).

It is easy to show that when K/2 > a,, the low type
retailers always receive their desired allocation with uni-
form allocation. Further, when K/2 < a,, the high type
retailers always receive less than their desired allocation.
Hence, it could be said that uniform allocation favors the
smaller retailers.

Interestingly, assuming the retailers order their desired
allocation. uniform allocation does not maximize the re-
tailers’ profits. As already mentioned, linear allocation
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maximizes their profits in that condition. (But remember,
that the retailers will not actually order their desired
quantities under linear allocation because that scheme
harbors an incentive to inflate orders). The problem with
uniform allocation is that it gives too much to the low
type retailer when there is one low type retailer, one high
type retailer and a; < K/2 < a;,. In that setting the low
type retailer receives his desired allocation (so his mar-
ginal value for additional stock is zero), whereas the high
type retailer’s marginal value for additional stock is
positive. The supply chain could enjoy higher profits by
allocating more capacity to the high type retailer.

6. Numerical study

A numerical study was conducted to gain further insight
into the allocation game with either linear, proportional
or uniform allocation. A set of 125 problems was con-
structed from all combinations of the following parame-
ters

% €40.1,0.3.0.5,0.7,0.9}.
w € {0.05,0.15,0.25,0.35,0.45.0.55.0.65.0.75.0.85}.
p €{0.1,03,0.5,0.7.0.9}.

where only combinations with x > w are included (so that
the low type retailers desire a positive amount). Recall
that the game is interesting only for K € (K_, K. ). where
K =max{2a;,a,} and K; = 2a;. At any capacity above
that interval, the retailers order their desired quantities
while for any capacity below the interval there is no
equilibrium. Therefore, for each problem a set of 99
scenarios are constructed where capacity in the Ath sce-
nario is
K d K, —-K
-t 100( N -

To facilitate comparisons across problems, define the
capacity index of the kth scenario to be k/100. A capacity
index of 0.01 thus represents extremely tight capacity
while a capacity index of (.99 represents only slightly
binding capacity.

For each scenario, we searched for both linear and
proportional allocation equilibria. With linear allocation
we considered the Type | candidate equilibrium, (2), the
Type 2 candidate equilibrium, (3), and the asymmetric
candidate equilibrium discussed in the Appendix. With
proportional allocation we considered the Type | candi-
date equilibrium specified in Theorem 9. We also sear-
ched for other equilibria, using the truthful orders and the
linear allocation candidate equilibria as initial vectors, as
described in Section 4.2. Finally, for each scenario we
evaluated expected profits under uniform allocation, and
the lower bound estimate of profits when there is no
equilibrium with proportional allocation. 11.
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6.1. Observations

This numerical study offers several observations. To be-
gin, our focus on symmetric equilibria is justified.

e No asymmetric equilibrium was found under either
linear or proportional allocation.

While we cannot claim that asymmetric equilibria
never exist, it appears that they are, at the very least,
uncommon. We did find symmetric equilibria, and
sometimes multiple equilibria in the same scenario.

¢ There can be no equilibria, a unique equilibrium, or
multiple equilibria in the capacity allocation game
with either linear or proportional allocation.

Figure 1 demonstrates the above observation for one
problem. In this problem x = 0.7, w = 0.05, and p = 0.5.
There exists no equilibrium under either allocation
scheme when capacity is tight (a capacity of 0.779 or
lower, which corresponds to a capacity index of 0.42 or
lower). Also, as discussed in Section 3.2, for some inter-
mediate capacities both equilibrium types exist. The figure
also suggests that the lack of an equilibrium is more
common (i.e., occurs for a wider range of capacity in-
dexes) than multiple equilibria, a pattern that is also ob-
served in all the other problems. Note that in this problem
a; = 0.325 and a;, = 0.475. If retailers never inflated their
orders, the lowest realized total orders the supplier would
receive would be 0.65, the mean total orders would be 0.8,
and the maximum total orders would be 0.95. Under ei-
ther proportional or linear allocation, the supplier may
observe expected orders substantially above these levels in
equilibrium. Finally, consistent with all the other prob-
lems, proportional allocation induced more order infla-
tion than linear allocation in the Type 2 equilibria, but
less order inflation in the Type 1 equilibria.

¢ Ascapacity becomes more restrictive, it 1s more likely
that there does not exist an equilibrium.

This observation is seen in Fig. 1, but it is demon-
strated more generally in Table 2. That table indicates the
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Fig. 1. Expected retailer orders(x = 0.70,w = 0.05.p = 0.50).
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percentage of scenarios across the 125 problems in which
there exists an equilibrium, and it is apparent that equi-
libria are less likely as capacity is reduced. This finding is
intuitive; as capacity becomes more restrictive each re-
tailer’s expects to receive a smaller fraction of his order,
so retailers fall into a cycle of continually larger orders in
an effort to secure some capacity.

Table 3 presents a comparison between the order in-
flating allocation mechanisms and uniform allocation.
(To conserve space, a subset of the capacity indices is
displayed). Average supply chain profits are slightly
higher with either proportional or linear allocation rela-
tive to uniform allocation. Table 4 indicates that the
supplier is better off with either proportional or linear
allocation, while Table 5 reveals that the retailers are
generally better off with uniform allocation.

e When there exists an equilibrium with either pro-
portional or linear allocation, the supply chain is
slightly better off on average than with uniform al-
location.

Table 6 presents data that compares proportional and
uniform allocation when there does not exist an equi-
librium with proportional allocation. We assume that
expected supply chain profits with proportional alloca-
tion equal II, as discussed in Section 4.3. The table in-
dicates that the retailers are significantly worse off with

Table 2. Existence of equilibria

Percentage of scenarios in which each of
the following equilibria tvpes exist

Linear allocation Proportional allocation

Capacity Type 1 Type 2 Type 1 Type 2
index (%) (% ) (% ) (% )
0.00-0.04 0 0 0 0
0.05-0.09 0 6 0 5
0.10-0.14 0 10 0 9
0.15-0.19 3 17 0 9
0.20-0.24 4 20 0 10
0.25-0.29 7 26 4 23
0.30-0.34 10 30 5 23
0.35-0.39 16 28 7 22
0.40-0.44 19 33 10 21
0.45-0.49 23 38 15 30
0.50-0.54 37 30 23 25
0.55-0.59 50 19 37 18
0.60-0.64 61 16 49 9
0.65-0.69 69 14 65 6
0.70-0.74 79 12 71 3
0.75-0.79 84 4 82 2
0.80-0.84 88 1 87 0
0.85-0.89 98 2 95 0
0.90-0.94 100 2 100 0
0.95-0.99 100 0 100 0
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Table 3. Comparison of proportional, linear and uniform
allocation equilibria for the supply chain

Cachon and Lariviere

Table 4. Comparison of proportional. linear and uniform
allocation equilibria for the supplier

The change in supply chain profits
between proportional or linear
allocation and uniform allocation,
as a percentage of supply chain
profits swith uniform allocation

Proportional  Linear allocation

The change in supplier profits
between proportional or linear
allocation and uniform allocation,
as a percentage of supplier
profits with uniform allocation

Proportional  Linear allocation

allocation equilibria allocation equilibria
equilibria equilibria
Capacity Type I Type 2 Type | Type 2 Capacity Type I Type 2 Tiypel Type 2
index (%) %) (%) %) index %) %) (%) (%)
Minimum of the  0.05 1.1 Minimum of the  0.05 7.3
observations 0.25 0.4 =23 0.1 -1.4 observations 0.25 0.5 0.3 0.7 0.3
0.50 0.0 -2.2 -1.6 -4 0.50 0.2 0.0 0.2 0.0
0.75 0.0 -24 -14 0.75 0.0 0.0 1.3
0.95 0.0 0.0 0.95 0.0 0.0
Average of the 0.05 8.1 Average of the 0.05 13.2
observations 0.25 0.4 0.3 0.5 0.7 observations 0.25 0.6 1.6 1.0 2.0
0.50 0.5 0.2 1.4 0.5 0.50 1.1 1.1 35 1.9
0.75 0.5 0.6 1.1 0.75 1.2 1.6 3.8
0.95 0.2 0.2 0.95 0.4 0.4
Maximum of the  0.05 24.8 Maximum of the  0.05 28.0
observations 0.25 0.5 2.1 0.8 4.2 observations 0.25 0.7 3.6 1.3 6.7
0.50 1.7 2.0 7.0 7.7 0.50 2.6 4.7 10.3 8.6
0.75 3.0 38 4.5 0.75 3.7 6.3 7.6
0.93 0.9 1.0 0.95 1.0 1.1

proportional allocation relative to uniform allocation,
whereas the supplier is significantly better off. Overall,
the supply chain is worse off with the order inflation
created by proportional allocation. There 1s an expla-
nation for these data. When there is no equilibrium with
proportional allocation the retailer orders are likely to
exceed capacity. With uniform allocation the retailers
order their desired quantities, which may very well be
less than the supplier’s capacity. Hence, the supplier sells
more on average with order inflation than with truthful
orders. so the supplier prefers the rampant order infla-
tion. On the other hand. the allocation of the capacity
with the order inflation is quite random, thereby leading
to an inferior allocation of stock across the retailers
relative to uniform allocation. For example, with ram-
pant order inflation it is possible that the retailer with
the highest need does not receive the highest allocation.
That clearly inefficient allocation never occurs with
uniform allocation. Therefore, order inflation lowers the
retailers’ expected profits.

e When there is no equilibrium with proportional al-
location. the supply chain and the retailers are better
off with the stability of uniform allocation.

Table 7 extends the previous intuition. Rampant order
inflation benefits the supplier and hurts the retailers, so it

will tend to benefit the supply chain when the supplier’s
profits represent the lions™ share of total supply chain
profits. That will occur when the wholesale price is high.
When the wholesale price is low, the retailers” profits
represent the majority of the supply chain profit’s. So we
would expect that rampant order inflation would lower
supply chain profits when the wholesale price is low, as is
seen in Table 7.

o Uniform allocation is most valuable to the supply
chain when the wholesale price is low. Alternatively,
with a high wholesale price the supply chain is better
off with proportional allocation.

7. Discussion

Our model is clearly a stylized version of existing supply
chains. In particular, we have assumed only two demand
states and two retailers. Nevertheless, we feel that the
qualitative results are likely to apply in more general
settings. For example, it is possible to confirm that uni-
form allocation induces truth-telling no matter the num-
ber of retailers, no matter the number of demand states
and no matter the distribution function over demand
states. Similarly. both linear and proportional allocation
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Table 5. Comparison of proportional. linear and uniform
allocation equilibria for the retailers
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Table 7. Impact of no proportional allocation equilibrium on
supply chain profits

The change in retailer profits
between proportional or linear
allocation and uniform aflocation,
as a percentage of retailer
profits with uniform allocation

Linear allocation
equilibria

Proportional
allocation
equilibriua

Capacity Tvpe 1 Tvpe 2 Tvpe I Trpe 2

index (% (%) (%) (%)

Minimum of the 0.05 0.5

observations 0.25 0.0 -4.8 00 =56
0.50 -0.1 —4.3 =27 =52
0.75 -0.4 -32 -24
0.95 -0.1 -0.1

Average of the 0.05 1.8

observations 0.25 0.0 -0.9 0.0 -09
0.50 0.0 -0.6 -0.5 -1.1
0.75 -0.1 -0.2 -09
0.95 0.0 -0.0

Maximum of the  0.05 53

observations 0.25 0.0 0.0 0.0 0.0
0.50 0.0 0.0 0.0 0.0
0.75 0.0 0.0 -0.1
0.95 0.0 0.0

induce order inflation in very general settings. Further. all
supply chains have the potentially conflicting objectives
of attempting to ensure high capacity utilization (so as to
increase the supplier’s profits) while also ensuring a rea-

Table 6. Comparison of proportional allocation and uniform
allocation when there is no proportional allocation equilibrium

Average change in profits
as a percentage of uniform

Capaciry allocation profits
index (%)
Total chain 0.05 -1
0.25 -4
0.50 -3
0.75 -11
Retailers 0.05 -19
0.25 -16
0.50 -4
0.75 =23
Supplier 0.05 17
0.25 16
0.50 11
0.75 4

Average change in supply chain profits as a
percentage of uniform allocation profits (% )

Wholesale price

Capacity

index 0.05 0.25 0.45 0.65 0.85
0.05 ~-16 -1 9 16 14
0.25 =22 =2 5 11 11
0.50 -12 -4 2 9 11
0.75 =21 -13 -6 -1 3

sonable allocation of that capacity among the retailers (to
maximize their profits).

The primary challenge to increasing the number of
demand states and retailers 1s computational, not con-
ceptual. With either of those extensions it is difficult to
obtain closed form solutions for candidate equilibria. A
better approach to find equilibria would be to merely
search for them numerically. As we do with proportional
allocation, it is not difficult to place bounds on the opti-
mal strategies, so a numerical search should not be
computationally prohibitive.

There are other potentially interesting extensions to
this line of research. In our model the supplier is only
concerned with increasing her sales, because we have as-
sumed that capacity is fixed before the retailers submit
their orders. Therefore, the only potentially destructive
element of order inflation is that it might lead to a poor
allocation of capacity among the retailers. Now suppose
the supplier would like to use the retailers’ orders to gain
some information about future demand. In that setting
order inflation creates a sccond problem: the supplier
obtains little information about demand if the retailers
submit arbitrarily large orders. Overall supply chain
performance could deteriorate without an exchange of
credible information.

8. Conclusion

The paper studies the capacity allocation game in which a
single capacity constrained supplier sells a single good to
two retailers over a single period. A retailer knows
whether his demand is “high™ or “low™ but does not
know the other retailer’s demand. When the sum of re-
tailer orders exceeds capacity the supplier allocates in-
ventory using either linear, proportional or uniform
allocation. We demonstrate that the retailers have an
incentive to inflate their orders with either linear or pro-
portional allocation, but not with uniform allocation.
Behavior in the capacity allocation game is complex
with either of the order inflating mechanisms. Each re-
tailer’s profit function need not be unimodal in his order

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




846

quantity. so the set of profit maximizing order quantities
1s not necessarily convex. As a result, pure strategy Nash
equilibria may not exist. Indeed, in a numerical study we
often found no equilibrium, especially as capacity be-
comes more restrictive.

In this model the supply chain must balance two ob-
jectives: (1) increase the supplier’s profits by increasing
the supplier’s capacity utilization; and (2) increase the
retailer’s profits by ensuring that the allocation of ca-
pacity closely matches the retailers’ true needs. Uniform
allocation suppresses order inflation, so it performs well
with respect to the second goal, but may perform poorly
with respect to the first goal. Inflation-inducing allocation
schemes perform the first goal well, and also the second
goal reasonably well when the order inflation is moderate
and orderly, i.e., when there exists an equilibrium.
However, when there does not exist an equilibrium those
mechanisms perform the second goal poorly. Therefore, if
the first goal is most important (high supplier profits),
then an order-inflation allocation mechanism should be
used. But if the second goal is most important (high re-
tailer profits) then the uniform allocation rule is wiser.

To summarize, we demonstrate some allocation
mechanisms always induce order inflation whenever ca-
pacity might be restrictive, whereas other mechanisms
always induce retailers to order only their ideal alloca-
tion. Whether order inflation helps or harms a supply
chain depends on how profits are distributed within
the supply chain. Encouraging order inflation increases
the supplier’s profits but reduces the retailers’ profits. The
damage to the retailer’s profits is particularly severe when
the order inflation is rampant, i.e., when there is no
equilibrium. That is most likely when capacity is restric-
tive. Hence, in those situations the supply chain is better
oftf by implementing a truth-inducing mechanism, like
uniform allocation, thereby eliminating any temptation
for the retailers to game the system.
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Appendices

Appendix A Proofs

Proof of Lemma 1. A retailer never orders less than his
optimal allocation because he never receives more than
his allocation. (So ordering less than a, would ensure that
the retailer always received less than a,). The latter result
is demonstrated for retailer i, and then by symmetry it
holds for retailer j. Suppose retailer i expects retailer j to
order either y, or y;, where v, > y;. However, retailer i
does not necessarily expect that retailer j will order yj,
when it is a high type. Hence, either retailer ; believes
retailer j will order y, with probability p or probability
1 — p. Let x* be retailer i’'s optimal order when he is a
high type. Certainly x* > a;. From the definition of x*,
for x > x*,

H;,(X, Y) - Hh(xx. Y) g 0.
Since
oI, _ o1,
> —.
ox — Ox
it follows that for x > x*,

0> I,(x.Y) - [,(x". V) > I(x. ¥) — TL(x". ¥).

But that means that IT;(x*,Y) > [1;(x, ¥). so retailer /’s
optimal order as a low type must be no greater than his
optimal order as a high type. |

Proof of Theorem 2. The cases with unrestrictive capacity
or very tight capacity have already been argued. Since
profits are strictly concave in each of the first four cases in
(1), the solutions to the first order conditions are clearly
candidates to maximize profits. The first order condition
solution to the fifth case is a;. which cannot be optimal
because capacity is restrictive when retailer j is a high
type. It remains to show that it can never be optimal to
order one of the interval boundaries: K —yv;: v, — K:
w—K; vy +K: vy + K. For the first three, retailer 7 is
assured to receive less than a,, so none of them can be
optimal. For the last one, retailer i always receives K,
which is always more than he needs. Only y; + K remains.
The marginal incentive to raise his order up to y; + K is

(I =p)z=w=2K) plz—w—y+w—2K)
+
2 2
If ordering y; + K 1s optimal, then retailer i must have a

marginal incentive to raise his order to y; + K. so the
above must be positive. Since K > a; = (1 —w)/2, the
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first term above is negative, which means the second term
must be positive. But retailer i’s marginal incentive to
raise his order above y; + K is

plzr —w— 4 — 2K)
2
which is positive. So if retailer 7 is willing to order at least

v + K. then he is willing to order even more. Thus, or-
dering v; + K cannot be optimal. |

Proof of Lemima 3. Suppose x, > K + y; is an equilibrium,
so retailer j receives a zero allocation when he is a low
type. Retailer i’s optimal order when he is a high type is
l—w—K+y, which is greater than 3, (since
K < 2a, =1—w). This means that retailer j receives
K — a, when he is a high type. For this to be an equi-
librium, a high type retailer j can have no incentive to
raise marginally his order

P

2

(I —w—2alm.xx)) + (1 = p)(1 —w—2a(y,x1))
o 9ali-x1)

ayh
nor can he have an incentive to marginally lower his order

p(1 = w = 2a(y.xu)) + (1 = p)(1 —w = 2a(v, x1))

" da(yn. x;)

Oy

But a(yy.x;) = K — ay, so

1 —w—2a(yy,x;) =2(2a, — K) > 0.

=0,

=0.

Therefore, both conditions cannot be satisfied, 1.c., retailer
j will have an incentive to either raise or lower his order.ll

Proof of Theorem 4. From Theorem 2, in equilibrium a
retailer’s order must be a subset of {r}(Y). r2(Y), r}(Y),
if{Y}} However, Lemma 3 eliminates any x;, > K + y; or
v — K > x; from consideration, which eliminates r(Y)

and r*{Y} from consideration. [ |

Proof of Lemima 3. Suppose there exists a Nash equilib-
rium in which even a low type expects capacity will bind
when it faces another low type, i.e., x; +); > K. From
Theorem 4, the Nash equilibrium must satisfy each re-
tailer’s first order condition, so the following system of
equations must be satisfied:

X = r[z(Y); Xp = r;zl(Y): V= r;‘(X) Yy = r,%(X).

But there is no solution to that system, hence there is no
equilibrium. |

Proof of Theorem 7. If retailer i knew that retailer j would
order y, he would order so that he receives his desired
allocation. a,. exactly. Let »;(y) be this order,

*

a(r!(v).y) = ay.
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or

) =y

YK~z - w)
Since retailer j orders no more than v, retailer i should
not order more than 7 = »/(y,), because otherwise he
surely will receive more than he desires. Similarly, since y;
is the least retailer j will order, retailer i should not order
less than r, = 7} (y;), because otherwise he surely will re-
ceive less than he desires no matter retailer ;s order.
Therefore, all profit maximizing orders must be in the
interval [r,, 7. |

Proof of Lemma 8. Take derivatives of the profit function:

(I =p)(z —w —2x) + pdm(alx.y)) /Ox

oL (x,Y) x<K-y
Ox (1 = p)om(alx.y))/Ox + pOm(alx. y))/ Ox
K -0 < X,

where for x+y > K,

on(a(x.y)) ( 2xK > vK
— =z —w— —:
Ox X+ y (x + y)
and
; =2(1=p)+pPmla(v.p)/0x* x<K-y
oI (x,Y) 2 2
TS (1 )Pt ) /O

+p0m(a(x.yn))/Ox*

where for x +y > K,

Prlalx,y)
=

K—w SX,

2xK

X+y

Z —w—

VK ) WK
+ T

XY/ ety
m(a(x,y,)) 1is strictly concave for x € [r,.7], since
K—y <r,. mlalx,y)) is strictly concave for
x € [r,K —y], so profits are strictly concave over
[r,, K — y]. (Profits are the sum of these functions). For
x> K —y, m(a(x.y)) can be a concave-convex func-
tion. From second order conditions, m(a(x.y;)) is
strictly convex for x >7%, and strictly concave for

xe€[K—y.7]. so profits are strictly concave on
max{r,.K -y}, 7] |

Proof of Theorem 9. Given the expectation that capacity
binds only when there are two high type retailers, a high
type retailer’s marginal profit is

on
ax: =(1=p)(1 —w—2x)
2xp Vi
+pll—w-— K =K,
Xp + Vn (x;, —b—y;,)'“

and
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o1,
Sl N Y4 R
- (1-p)
2pyK 2
A <(1 W) r K T K).
(xp + yn) Xp+ Ve Xpt Y
With the optimal order it must hold that
2
l—w———t K >0,
Xp -+ Yn
or
< l—w (A)
SV T —w)

otherwise the retailer could increase his profits by de-
creasing his order. But if the above holds. the second
order condition is negative, and hence profits are strictly
concave. So the first order condition in that interval yields
a global optimal.

Suppose an asymmetric equilibrium exists, i.e., the re-
tailers choose different quantities when they are a high
type. Let x;, and y; be these quantities. Both must satisfy
the first order conditions

\ 2X},
F—p)(1 —w—2x,) + (l—w— K>
(L—=p) n+p o

X LﬁK — 0’
(xu 4+ yn)”
2y
(I=p)(1 —w=2p)+ p(l —w— i[()
Xp+ Vi
x—t K = 0.
(xp +yn)”
But that implies that
I —w)K
21 -p) = Ll‘)_j
(xn + )"

which cannot be. So there does not exist an asymmetric
equilibrium in which capacity binds only with the high
types. The solution to the following yields the high type
order in a symmetric equilibrium,

K
(1—p) (1 —w—=2x3)+p(1 =w—K)—=0.
4Xh

It is easy to confirm that indeed (A1) holds in equilibri-
um, since K < 1 —w. [ ]

Proof of Theorem 10: From the implicit function theorem,

Or(y)
OK

_on, o,
- OxOK/ oxk

With proportional allocation profits are continuous in a
retailer’s order. Therefore, any globally optimal order
must satisfy a retailer’s first order condition, and at that
order the profit function must be concave. Hence, the

Cachon and Lariviere

above is negative, i.e., a marginal increase in capacity
reduces a retailer's optimal order quantity (locally).
Hence, an increase in capacity will reduce the retailers’
order quantities in equilibrium, leading to lower expected
sales for the supplier. |

Appendix B. Asymmetric equilibria with linear allocation

Consider the possibility of an asymmetric equilibrium,
X = {x;,x;} and Y = {¥,,3,}. where retailers expect ca-
pacity only binds when retailer 7 is a high type,

X +¥, > K, X +y,>K. y,+x <K

Given those expectations, the following must hold

Y =a, %=nr{Y}, ¥ =r{X}, ¥ =r{X}
The solution is
X =ai,
_ 41l —w—K)+2(x—w) — p(1 = 2K + 3% — 4w)
Xp =
4(1 - p)
(-2
4(1-p)
_ 8(a—w) —2p(4K + 52— 2 — 3w)
e 41— p)(d=3p)
PP (1 —a—6K) — p*(l — %)
A1 -p)(4-3p)
3, = 8(1l —w) —2p(4K — 2+ 4 — 3w)

4(1 = p)(4 = 3p)
3p°(1 -2 +2K) — p'(1 — =)

4(1 = p)(4 = 3p).
As with the other candidate equilibria, this equilibrium
must be consistent with the retailers’ expectations and no

retailer can have a profitable deviation from the equilib-
rium, i.e..

X =rY). I=n{Y} ¥ =rnlX} ¥ =n{X}
Note that this is an asymmetric equilibrium, i.e., retailer i
orders different quantities than retailer j. Since the re-
tailer names are arbitrary, if such an equilibrium exists,
then there necessarily exists another equilibrium in which
the retailers’ roles are reversed, i.e., capacity only binds
when retailer j is a high type.
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