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R etailers must constantly strive for excellence in operations; extremely narrow profit mar-
gins leave little room for waste and inefficiency. This article reports a retailer’s challenge

to balance transportation, shelf space, and inventory costs. A retailer sells multiple products
with stochastic demand. Trucks are dispatched from a warehouse and arrive at a store with
a constant lead time. Each truck has a finite capacity and incurs a fixed shipping cost, no
matter the number of units shipped. There is a per unit shelf-space cost as well as holding
and backorder penalty costs. Three policies are considered for dispatching trucks: a mini-
mum quantity continuous review policy, a full service periodic review policy, and a mini-
mum quantity periodic review policy. The first policy ships a truck when demand since the
previous shipment equals a fixed fraction of a truck’s capacity, i.e., a minimum truck utili-
zation. The exact analysis of that policy is the same as the analysis of reorder point policies
for the multiechelon problem with one-warehouse, multiple retailers, and stochastic demand.
That analysis is not computationally prohibitive, but the minimum quantity level can be
chosen with a simple economic order quantity (EOQ) heuristic. An extensive numerical
study finds the following: Either of the two periodic review policies may have substantially
higher costs than the continuous review policy, in particular when the warehouse to store
lead time is short; the EOQ heuristic performs quite well; the minimum quantity policy’s
total cost is relatively insensitive to the chosen transportation utilization, and its total cost
is close to a lower bound developed for this problem.
(Inventory Management; Stochastic Demand; Joint Setup Cost)

Do not envy retailers, for they have a very tough
time earning profits (Guar et al. 1999). Hence, excel-
lence in operations is critical for them. An important
task for retailers is the balancing of transportation,
shelf space, and inventory costs. For instance, a re-
tailer could choose to increase transportation utiliza-
tion, thereby lowering its transportation cost, but that
also increases the time interval between deliveries to
a store. To account for less frequent deliveries, the
store will either need to expand shelf space and in-
ventory or sacrifice customer service. This research
studies the challenge of managing these interactions.

The setting considered here is a single retail store

that sells multiple products with stochastic demand.
There are linear inventory holding and backorder
costs as well as a linear shelf-space cost. The latter
reflects the expense of acquiring and maintaining a
larger store as total shelf space is expanded. The store
is replenished from a warehouse via trucks. Each
truck has a finite capacity, C, and incurs a fixed de-
livery charge independent of the number of units it
actually delivers. The warehouse always has enough
trucks and inventory to fill the store’s replenishment
requests, but any shipment requires a constant trans-
portation time from the warehouse to the store. The
retailer must assign a shelf-space quantity for each of
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its N products, choose a replenishment policy, and
schedule truck dispatches to minimize total expected
costs per unit time. Let Si be the amount of shelf
space assigned to product i, and let S � {S1, . . . , SN }.

Three policies for dispatching trucks are consid-
ered. The full service periodic review policy, or (S, T )
policy for short, reviews the inventory status of the
store every T units of time and dispatches enough
trucks to completely replenish the store’s shelves; a
base-stock policy is the replenishment policy for each
product, where the shelf space is the base-stock level.1

This is a full service policy because each product’s
order (i.e., its demand since the last review epoch) is
always shipped. The parameter T controls the trans-
portation cost, but it is possible that some deliveries
will have a low transportation utilization: Because of
the full service guarantee, a truck might be dis-
patched with only one unit. One desirable feature of
this policy is that shelf space is minimized (for the
given review interval T ): Because there is no uncer-
tainty in the supply process, each product’s shelf
space need only buffer the demand uncertainty dur-
ing the transportation lead time.

If the retailer does not have the ability to choose a
review interval, T, the retailer could use a minimum
quantity periodic review policy, or a (Q, S � T ) policy for
short: Every T units of time (an exogenous parame-
ter) the retailer reviews its inventory and dispatches
trucks so long as one truck has at least Q units and
the other trucks are full. (One might be tempted to
require that at each review epoch the average ship-
ment is no less than Q units, but that constraint re-
sults in a more complex analysis.) Due to the Q con-
straint, some portion of the products’ orders might
not be filled, where each product’s order equals the
difference between its shelf space and its inventory
position (on-hand inventory minus backorders plus
on-route inventory). Hence, this policy requires an al-
location rule to determine what portion of each order
is actually shipped. This allocation rule creates a sup-
ply uncertainty that must be accounted for in the
shelf-space decision, in addition to demand uncer-

1This policy resembles Albert Heijn’s policy for dispatching trucks
from its central warehouse to its stores. Albert Heijn is a large gro-
cery retailer in the Netherlands.

tainty. Due to the complexity of that problem, a heu-
ristic is developed to choose policy parameters.

With a periodic review policy the store manager
can plan the stock replenishment process (e.g., get-
ting extra labor to help with unloading and shelf re-
plenishment) because the store receives shipments on
a regular schedule. The key deficiency of a periodic
review policy is that it might delay some truck ship-
ments: Once there are enough orders to fill a truck, a
truck should be shipped immediately, i.e., waiting to
ship a full truck only raises costs. A minimum quantity
policy, or (Q, S) policy for short, eliminates that prob-
lem: Inventory is reviewed continuously and a truck
is dispatched when Q units have been ordered, where
each product’s order equals its demand since the last
shipment. (Note that all three truck dispatching pol-
icies are coupled with base-stock policies to govern
the products’ replenishment decisions, where each
product’s base-stock level equals its shelf space.) With
this policy every shipment contains exactly Q units,
and so the transportation utilization is constant
across all shipments, Q/C. As with the (Q, S � T ) pol-
icy, this policy creates supply uncertainty, but it does
so in a way that is analogous to the supply uncer-
tainty generated by reorder point policies in a single
product two-echelon supply chain with one ware-
house and multiple retailers. Axsäter (1993) provides
an exact analysis of that model, and so those results
are incorporated into this model to provide a method
to determine the optimal (Q, S) policy.

The analysis of the (Q, S) policy is computationally
tractable, but a simple heuristic for choosing Q
(which, recall, determines the transportation utiliza-
tion) is desirable. It is shown that the cost function is
the sum of a decreasing hyperbolic function (trans-
portation cost) and an approximately increasing lin-
ear function (nontransportation costs). That is the
same form as the cost function in the well-known eco-
nomic order quantity (EOQ) problem. Thus, the heu-
ristic developed is analogous to the EOQ with an ad-
justed holding-cost rate. Because the EOQ cost
function is relatively ‘‘flat’’ about its optimum, it is
reasonable to conjecture that the retailer’s costs are
insensitive to the chosen transportation utilization.
The numerical study validates that conjecture.
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In addition to the sensitivity of the cost function
about the optimum, a manager would also want to
know how the optimal control variables, Q and S, are
impacted by changes in the model’s parameters: lead
time, product-line breadth, total-demand volume. For
example, one could argue that the optimal transpor-
tation utilization and the lead time from the ware-
house to the store are substitutes: As the lead time is
decreased the retailer can take advantage of the faster
deliveries by waiting to fill its trucks with additional
units. Alternatively, they are complements if the re-
tailer should take advantage of the shorter lead time
by not waiting to fill its trucks with additional units
so as to reduce supply uncertainty. In fact, the latter
is correct. Overall, it is shown that transportation uti-
lization is a complement to lead time and total de-
mand volume but a substitute to the product line
breadth.

Whereas it can be conjectured that the (Q, S) policy
does better at managing the costs explicitly included
in this model than the two periodic review policies,
the numerical study provides an indication of the
magnitude of the advantage. It is shown that the pe-
riodic review policies perform almost as well as the
(Q, S) policy in some scenarios, but they may perform
significantly worse in other scenarios. In particular,
the (Q, S � T ) policy performs poorly if T is too large,
where a reasonable benchmark for ‘‘too large’’ is T
greater than the average time for total demand to
equal the truck capacity. However, even if T is not too
large the average performance of the (Q, S � T ) policy
deteriorates as the warehouse-to-store lead time is re-
duced. The (S, T ) policy also performs poorly when
the warehouse-to-store lead time is short but per-
forms reasonably well when that lead time is long.

It is possible that a policy exists that is even better
than the (Q, S) policy. (The optimal policy is not
known.) A lower bound is developed for this model
to get a sense of how much better an optimal policy
might be. The numerical study finds that the (Q, S)
policy provides a cost that is not much greater than
the lower bound if there is a long lead time or if the
ratio of backorder penalty cost to the shell-space cost
is small, i.e., if shelf space is relatively expensive. The
gap between the feasible cost and the lower bound is

significant in particular with a low lead time and a
high backorder penalty cost, again, relative to the
shelf-space cost. Nevertheless, the overall perfor-
mance of the (Q, S) policy is quite good.

The remainder of the article is organized as fol-
lows: the next section provides a review of the related
literature, §3 details the exact evaluation of reorder
point policies and also provides the EOQ heuristic
procedure, §4 evaluates the fixed interval policies, §5
describes the lower bound, §6 presents the numerical
study, and §7 summarizes the conclusions.

1. Literature Review
The retailer’s problem is related to the joint replenish-
ment problem (JRP). While there are many versions
of the JRP, the key features are that each item/prod-
uct incurs its own fixed charge (a minor setup cost)
whenever it is ordered and the system incurs a fixed
charge (a major setup cost) whenever there is an or-
der, no matter the number of items in that order or
which items are in the order. The retailer does not
incur an item-specific fixed charge, but the fee per
truck delivery is similar to the system fixed charge.
The only difference, albeit a significant one, is that the
truck delivery fee is a fixed charge for a limited num-
ber of units, i.e., the capacity of the truck, whereas in
the JRP the fixed charge is truly a fixed charge, i.e.,
there is no capacity limit. Furthermore, the JRP lit-
erature does not consider a shelf-space cost.

Several authors study the JRP with stochastic de-
mand. Balintfy (1964) proposed can-order policies: A
can-order, a must-order, and an order-up-to level are
specified for each product; inventory is reviewed con-
tinuously, and an order is placed whenever there is
an item with an inventory position at or below its
must-order level; included in the order is any item
with an inventory position at or below its can-order
level, and for each of those items the order raises its
inventory position to its order-up-to level. Silver
(1981) and Federgruen et al. (1984) propose algo-
rithms to choose can-order policy parameters. A pos-
sible deficiency of the can-order policy is the poor
coordination across items: An item might trigger an
order when there are very few other items that need
a replenishment.
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To improve coordination across items, Atkins and
Iyogun (1988) study two periodic review replenish-
ment policies. In the first policy, items are ordered up
to a base-stock level at every review epoch. The de-
cision parameter is the length of the time between
review epochs. With the second policy, there is a set
of items that are reviewed at every epoch, whereas
the other items are reviewed less frequently (but still
only at review epochs). The second policy is designed
to account for differences in item-specific fixed charg-
es. When there are no item-specific fixed charges, as
in this model, the two policies are the same. The full
service fixed interval policy in §4 is the same as At-
kins and Iyogun’s first policy. However, their cost
evaluation is approximate, whereas this article pro-
vides an exact analysis.

Pantumsinchai (1992) develops a heuristic to
choose parameters for the QS policy introduced by
Renberg and Planche (1967): Whenever the combined
inventory position of all items reaches a reorder
point, an order is placed to raise the inventory posi-
tion of all items to their base-stock levels. That policy
is the same as the (Q, S) policy considered in this
article. However, here the optimal reorder point pol-
icy is found. Viswanathan (1997) considers P(s, S)
policies: every T units of time each product is ordered
based on an (s, S) policy, where T, s and S are chosen
parameters. He shows in a numerical study that the
P(s, S) policies generally perform better than the oth-
er policies mentioned.

Atkins and Iyogun (1988) develop a lower bound for
the JRP, which decomposes the problem into N inde-
pendent problems by allocating the system fixed
charge (the major setup cost) among the products. In
this article, a new idea is used to develop a lower
bound: Instead of allocating the fixed cost across prod-
ucts, demands are allocated across products. Specifi-
cally, each system demand is divided among the prod-
ucts proportional to their average demand rates.

Pryor et al. (1999) study the single-item inventory
problem with transportation setup costs. That prob-
lem is closely related to the one considered here with
the key distinction being that they concentrate on the
single-item problem. In fact, under certain conditions
they find an optimal policy. They also propose a heu-
ristic policy for the two-item problem.

There is an extensive literature on the JRP with de-
terministic demand: e.g., Jackson et al. (1985), Anily
and Federgruen (l991), Federgruen and Zheng (1992),
Viswanathan and Mathur (1993), and Bramel and
Simchi-Levi (1995). With deterministic demand the
timing and quantity of future orders can be antici-
pated, so it is not clear how to compare those policies
with those designed for stochastic demand.

Speranza and Ukovich (1994) consider the deter-
ministic version of the retailer’s problem: A firm man-
ages transportation and inventory along a single link
(e.g., between a warehouse and a retail store), there
are multiple products, trucks have finite capacity,
there are inventory holding costs, and there is a fixed
cost per delivery. For that problem Blumenfeld et al.
(1985) show that the EOQ model can be used to
choose the delivery frequency. As Speranza and
Ukovich (1994) discover, that method does not pro-
vide a good solution if the firm has a limited set of
feasible delivery frequencies (e.g., it cannot ship every
�2 units of time). This article demonstrates that a
EOQ heuristic does provide good solutions in a sto-
chastic demand setting, assuming no constraint is im-
posed on when the firm can dispatch trucks.

There is a significant literature on managing vehi-
cle routing along with inventory costs. Much of that
literature assumes deterministic demand. Federgruen
and Zipkin (1984a), McGavin et al. (1993), Adelman
and Kleywegt (1999), and Reiman et al. (1999), are
exceptions. This article does not consider vehicle rout-
ing.

There has been some recent literature on periodic
review policies in the multiechelon inventory problem
with multiple retailers and stochastic demand: Ca-
chon (1999), Chen and Samroengraja (1996, 1999),
and Graves (1996). A retailer in that work is analo-
gous to a product in this model. But those papers do
not include a joint ordering/transportation cost.

Several authors study the allocation of shelf space
across multiple products when customers may switch
their demand among products if their preferred prod-
uct is unavailable (see Mahajan and van Ryzin 1999
for a review). This article does not consider that be-
havior, i.e., the demand rate for each product is in-
dependent of the shelf-space allocation. Gerchak and
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Wang (1994) consider a model in which the mean de-
mand rate for a product is increasing in the product’s
shelf space, but in this model each product’s demand
rate is exogenous.

2. Model
A single retailer manages a warehouse and one retail
store. Trucks are used to transport inventory from the
warehouse to the retail store. Each truck has a capac-
ity of C units and costs K per delivery, independent
of the amount transported. Once a truck is dispatched
from the warehouse, it arrives at the retail store in
exactly L units of time. The time to load and unload
a truck is ignored. Trucks may be dispatched at any
time, and there is no limit on the number of trucks
available.

The retailer sells N products. Demands are ob-
served continuously. Let D be stochastic demand (int

i

units) for product i over any interval of time of length
t, and let Dt be total demand over the same interval
(also in units). Let �i be the mean demand rate, �it �
E[D ], and let � be the total demand rate, � � �t N

i i�1

�i. Let f i(x, t) and Fi(x, t) be the density and distri-
bution functions of D . D has a Poisson distribution.t t

i i

In some retail settings the Poisson distribution is not
the best representation of the demand process (see
Agrawal and Smith 1994), but it does provide ana-
lytical tractability.

Product i is charged hi per unit of inventory at the
retail store per unit time. A warehouse inventory
holding cost is not charged. (The warehouse probably
serves multiple retail stores, but this model focuses
on the cost to operate a single store.) Neither is there
a holding cost for pipeline inventory, because the re-
tailer cannot influence that cost. Product i is also
charged pi per unit backordered per unit time. It is
assumed that all demands are backordered, which is
doubtful for most retailers. However, introducing lost
sales would render the problem computationally in-
tractable. Further, for large pi values the retailer will
choose policies that lead to high fill rates, and thus,
the behavior of this model is an approximation of the
behavior in a model with lost sales.

Let Si � 0 be the amount of shelf space the retailer

allocates to product i; the retailer cannot hold any
more than Si units of product i at its store, nor can
product i be stored in another product’s shelf space.
(For example, a grocery retailer does not want to
stock cans of soup in the shelf space designated for
diapers. Further, it is too costly to continuously
change the products’ shelf-space allocations.) One
consequence of the shelf-space constraint is that the
retailer cannot load onto a truck more units than can
fit on the store’s shelves if the truck were to arrive at
the store immediately.2

The retailer incurs a charge of a per unit of shelf
space allocated to any product. There is no constraint
imposed on the total shelf-space allocation; the model
is best applied before the retailer has constructed its
store. (A shelf-space constraint can be accommodat-
ed, as described in §3.) Note that the shelf-space cost
cannot be incorporated into the product’s holding
cost because, whereas the average holding cost for a
product is based on that product’s average inventory,
the shelf-space cost is based on the product’s maxi-
mum inventory position.

The retailer’s objective is to choose a truck dis-
patching policy and a shelf-space allocation and an
inventory policy to minimize total expected cost per
unit time.

Some math notation:  x is the greatest integer less
than or equal to x; x is the smallest integer greater
than or equal to x; [x]� � max{0, x}; and [x]� � max{0,
�x}.

3. The (Q, S) Policy
An intuitive policy for dispatching trucks is to ship
a truck whenever the cumulative orders across the
products equals a constant threshold, where an order
for one unit of product i is generated with each de-
mand for product i; i.e., products are ordered using
a base-stock policy and each product’s base-stock lev-
el equals its shelf space, Si. Let Q be the truck thresh-

2Some stores have backrooms where any product may be stored,
thereby allowing the retailer to load more units onto a truck than
can be placed on the shelves. However, units in the backroom are
not immediately available to customers. Hence, a backroom acts like
a warehouse.
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old level, where Q ∈ [1, C]: It is never optimal to ship
empty trucks, which rules out Q � 1; nor is it optimal
to delay shipping a full truck, which rules out Q 	
C. When Q � C, the (Q, S) policy is a ‘‘full truck’’
policy, i.e., only full trucks are dispatched.

The (Q, S) policy is simple to describe, but in prac-
tice it may be difficult to implement. The retailer
would require an information system that continu-
ously and accurately monitors inventory at the store
and communicates that information to the warehouse.
In addition, the warehouse must have the capability
to respond to orders without the benefit of a periodic
shipment schedule.

Although it may not be initially obvious, the (Q, S)
policy is a subset of the reorder point policies Axsäter
(1993) considers in a two-echelon inventory system.
Axsäter (1993) provides a recursive algorithm to ex-
actly evaluate expected inventory and backorder costs
and to choose optimal reorder point policies. This
section next links this model to Axsäter’s model. For
clarity, only the necessary results to evaluate costs
and to find the optimal policy are explained.3 The
section concludes with a simple heuristic for choosing
each product’s shelf space and a heuristic for choos-
ing Q.

In Axsäter (1993) there is one warehouse and N
retailers. There is a constant lead time from the in-
ventory source to the warehouse, Lw, and a constant
lead time from the warehouse to each retailer, Lr. De-
mand at each retailer is Poisson. Axsäter assumes an
identical demand rate across the retailers, but that as-
sumption is not needed when the retailers implement
one-for-one ordering. (Axsäter 1990 derives an exact
analysis with non-identical retailers and one-for-one
ordering at both echelons.) Retailers use (Ri, Qi) re-
order point policies to manage their inventory, and
the warehouse inventory is managed with an (Rw,
Qw) reorder point policy.

3Axsäter’s results do require several straightforward modifications.
He assumes identical retailers (in this setting each retailer corre-
sponds to a product), because he considers the possibility of batch
ordering by the retailers. The identical retailer assumption is not
necessary when the retailers use one-for-one ordering, even if the
warehouse uses batch ordering. Also, Axsäter does not consider an
ordering/transportation cost nor a shelf-space cost, so those costs
must be included in the analysis.

To connect the models, let retailer i correspond to
product i. Because a base-stock model manages each
product’s inventory, let Qr � 1 and Ri � 1 � Si. In
Axsäter, each warehouse order contains Qw units. In
this model, each warehouse order is a truck that con-
tains Q units. So, a truck in this model corresponds
to a warehouse order in Axsäter, i.e., set Qw � Q. In
Axsäter, the warehouse orders a batch from its
source, which ships all orders immediately, whenever
its inventory position is Rw. In this model, inventory
is immediately available to the warehouse, so the
warehouse has no on-order inventory, Lw � 0. Fur-
ther, the warehouse inventory does not incur holding
costs, so the warehouse in this model has no on-hand
inventory either. Hence, in this model, the ware-
house’s inventory position equals the absolute value
of the number of units backordered. Thus, a ware-
house order (a truck) is placed (dispatched) when
there are Q backorders at the warehouse, which cor-
responds to Rw � �Q in Axsäter. Trucks require time
to travel to the retail store, so L � Lr. Note that in
Axsäter, Rw is a choice parameter and Qw is exoge-
nous, whereas in this model both are choice param-
eters, but Q � �Rw � Qw.

Now consider the evaluation of expected costs for
an (Q, S) policy. (The following notation is different
from that in Axsäter to streamline the presentation
and to provide consistency with the rest of the arti-
cle.) This is done by relating a unit’s arrival time at
the retailer with the time the unit is demanded: If the
unit arrives before its demand, holding cost is in-
curred; whereas if the unit arrives after its demand,
backorder cost is incurred. Averaging over all units
yields the average cost per unit time.

A unit of product i ordered and shipped at time 

arrives at time 
 � L. That unit satisfies the Sith de-
mand to occur after time 
. Let ĝi(Si, L) be the ex-
pected holding and backorder costs incurred by a
unit of product i if the unit is shipped once it is or-
dered,

t

ĝ (y, t) � p � (y, x)(t � x) dxi i � i
0

�

� h � (y, x)(x � t) dx, (1)i � i
t
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where �i(y, t) is the density function of the Erlang (�i,
y) distribution. Note that

t ty y
� (y, x)x dx � � (y � 1, x) dx � (1 � F (y, t)),� i � i i� �i i0 0

since the probability that (y � 1)th demand after time

 occurs before time 
 � t is the same as the proba-
bility that (y � 1) or more demands occur over the
interval [
, 
 � t]. So (1) can be written as:

1
ĝ (y, t) � [y(h � p )F (y, t) � � t(h � p )F (y � 1, t)i i i i i i i i�i

� p (� t � y)].i i

Now suppose a unit of product i is ordered at time

, but it is not shipped until time 
 � t, t � 0. If m
demands occur at product i over the interval [
, 
 �
t], then expected costs for that unit are ĝi(Si � m, L):
The unit shipped at time 
 � t will arrive at the re-
tailer at time 
 � t � L and satisfy the (Si � m)th
subsequent demand after time 
 � t. Let n be the
number of products ordered in the interval (
, 
 � t]
(including possibly product i), where n ∈ [0, Q � 1].
(n � 0 means that the unit triggers its own truck ship-
ment, i.e., t � 0.) Given the set of n demands, the
number of product i demands in that set is binomially
distributed, where n is the number of draws and i

� �i/� is the probability of success. Let Zi(n) be that
random variable,

n
y n�yPr(Z (n) � y) � ( ) (1 �  ) .i i i� �y

Finally, n is the realization of a uniformly distributed
random variable on the interval [0, Q � 1]: �Q � 1
� n is the warehouse’s inventory position, and Axsä-
ter (1993) demonstrates that the warehouse inventory
position is uniformly distributed on the interval [�Qw

� 1, 0]. Thus, the expected holding and backorder
cost per unit of product i is

Q�1 n1
Pr(Z (n) � m)ĝ (S � m, L).� � i i iQ n�0 m�0

The shelf-space cost for product i occurs at rate aSi.
Transportation cost per unit is K/Q, so transporta-
tion cost is incurred at an average rate �(K/Q). Over-
all, let �(S) be expected cost per unit time,

N Q�1 nK 1
�(Q, S) � � � aS � Pr(Z (n) � m)� � �i i�Q Qi�1 n�0 m�0

� � ĝ (S � m, L) .i i i � (2)

Axsäter (1993) demonstrates that the latter term in
�(Q, S) is convex in Si. Because the shelf-space term
is linear in Si, �(Q, S) is convex in Si. Hence, for a
fixed Q it is easy to evaluate the optimal shelf space
for each product. (If there is a shelf-space constraint,
then a greedy algorithm finds, for a fixed Q, the op-
timal shelf space for each product: Start each product
with zero shelf space, allocate one unit of shelf space
at a time to the product that generates the greatest
marginal cost reduction, stop when the shelf-space
constraint is binding). Let S (Q) be product i’s opti-*i
mal shelf space given Q. It is intuitive that S (Q) is*i
nondecreasing in Q: As truck utilization is increased,
Q/C, the retailer never reduces a product’s shelf
space. Finding the optimal shipment quantity, Q*, re-
quires a search over the feasible interval, [1, C]: �(Q,
S (Q), . . . , S (Q)) may not be convex in Q.* *1 N

Because �(Q, S) is not well behaved in Q, it is not
possible to definitively characterize the behavior of
the optimal policy with respect to the parameters
(e.g., L, �, N). Nevertheless, clues are available to sug-
gest trends. Consider the relationship between L and
the optimal Q. L has no impact on transportation
costs, so its interaction with Q occurs with the non-
transportation costs. Focus on the behavior of the ĝi

function. Note that

1
ĝ (y � 1, t) � ĝ (y, t) � [(h � p )F (y � 1, t) � p ].i i i i i i�i

Hence, y*(t) minimizes ĝi(y, t) if y*(t) is the largest
integer such that Fi(y*(t) � 1, t) � pi(hi � pi). Because
Fi(y, t) is stochastically increasing in t (i.e., Fi(y, t) �

Fi(y, t�) for all t � t�), the following tends to hold for
L � L� and integer values of x:

ĝ (y*(L) � x, L) � ĝ (y*(L), L)i i

	 ĝ (y*(L�) � x, L�) � ĝ (y*(L�), L�).i i

In words, the ĝi function becomes ‘‘flatter’’ around its
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minimum as L increases.4 If the ĝi function becomes
flatter, then the marginal change in nontransportation
costs with respect to Q decreases, i.e., as L increases,
increasing Q generates a smaller marginal increase in
the nontransportation costs. That suggests the opti-
mal Q is increasing in L: Because an increase in L has
no impact on the marginal benefit of an increase in
Q (a lower transportation cost) and decreases the
marginal cost of an increase in Q, the optimal Q tends
to increase. The lesson for a manager is that the op-
timal transportation utilization (Q/C) should de-
crease if faster deliveries between the warehouse and
the store become available.

The same argument can be applied to the total-
demand parameter, �, and the number of products
parameter, N. An increase in �, holding all else con-
stant, tends to increase each product’s demand rate,
which makes the ĝi functions flatter, i.e., it has the
same qualitative impact as an increase in the lead
time. Hence, an increase in � should lead to a higher
optimal Q. On the other hand, an increase in the
breadth of the product line, again holding all else
constant, lowers the average product’s demand rate,
which makes the ĝi functions steeper. Hence, an in-
crease in N should lead to a lower optimal Q. To sum-
marize, high volume retailers with narrow product
lines and long lead times should have high transpor-
tation utilization. That hypothesis is consistent with
the recommendation in Fisher (1997) that companies
with innovative products (i.e., ones with high de-
mand variation) should implement market responsive
supply chains, one consequence of which includes
low transportation utilization.

3.1. Two Heuristics
Although it is not computationally difficult to evalu-
ate the optimal (Q, S) policy, it would be useful to
construct simple heuristics to choose Q and S. Those
heuristics could provide a retailer with a quick check
on the quality of current performance, and they also
provide some qualitative insights. Both heuristics are

4That relationship does not always hold. For certain critical fractiles,
pi/(hi � pi), it is possible that the ĝi function is flatter near its min-
imum for smaller lead times.

derived by replacing the stochastic variables in the
cost function (2) with their mean.

If product i’s demand occurred at a deterministic
rate �i, then at time 
 the expected holding and back-
order costs at time 
 � L is g (x), where x is the in-d

i

ventory position at time 
,

g (x) � hi[x � �iL]� � pi[x � �iL]�.d
i

Note that g (x) � �i ĝi(x, L) for all x and g (x) � �i ĝi(x,d d
i i

L) for large �x�. Replacing �i ĝi(x, L) with g (x) in (2)d
i

gives
N Q�1 nK 1

d� � aS � Pr(Z (n) � m)g (S ) .� � �i i i i� �Q Qi�1 n�0 m�0

To approximate the above, replace the binomial ran-
dom variable with its mean value,

N Q�1K 1
d� � aS � g (S �  n) . (3)� �i i i i� �Q Qi�1 n�0

The above is a convex function in Si, so the optimal
Si is not difficult to find. But working with discrete
Si values is cumbersome, so construct the continuous
approximation of (3), (Q, S),�̃

SN iK 1
d�̃(Q, S) � � � aS � g (y) .� i � i� �Q  Qi�1 i S � Qi i

(Q, S) is convex in Si. Let S̃i(Q) be an optimal shelf�̃
space for product i given the cost function (Q, S),�̃

 0 a � pi
S̃ (Q) �  p � ai i� L �  Q a � p . i i i� �p � hi i

Note that S̃i(Q) is linear in Q and greater than the
mean lead time demand. (S (Q*) can be less than*i
mean lead time demand, especially if a is large rela-
tive to pi.)

From the envelope theorem, (Q, S̃i(Q)) is the sum�̃
of a decreasing hyperbolic function and N increasing
linear functions. That is the same structure as the
well-known EOQ. Hence, (Q, S̃i(Q)) is convex in Q.�̃
Let Q̃ minimize (Q, S̃i(Q)),�̃

 �K
, C ˜ N 2Q � min .  ( p � min{a, p })i i i� p �� i � �� �2 p � hi�1 i i 
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The Q-heuristic sets Q �  Q̃ � 0.5 and the S-heu-
ristic sets Si �  S̃i(Q̃) � 0.5 , i.e., both are rounded off
to the nearest integer. Better rounding procedures
could be developed, but that level of precision is un-
necessary for this exercise, i.e., in practice the optimal
(Q, S) policy should be implemented because the ex-
act cost function is not computationally demanding.

It is well known that the EOQ cost function is quite
flat about its minimum. Hence, to the extent that (Q,�̃
S) provides a good approximation for the true cost
function, it is reasonable to conjecture that �(Q,
S (Q)) is also relatively flat about its minimum, i.e.,*i
costs are relatively insensitive to the chosen trans-
portation utilization, Q/C. The numerical study eval-
uates that conjecture along with the quality of the two
heuristics.

4. Periodic Review Policies
With a periodic review policy the retailer reviews its
inventory every T units of time. Two versions are con-
sidered. With a full service policy, an (S, T ) policy,
the retailer dispatches a sufficient number of trucks
at a review epoch to replenish all demand since the
previous review epoch. With a minimum quantity
policy, a (Q, S � T ) policy, the retailer requires that one
of the dispatched trucks has at least Q units and the
remaining trucks are full. To control its transportation
cost, the retailer chooses T in the (S, T ) policy. In the
minimum quantity policy T is exogenous, so the re-
tailer controls the transportation cost with the param-
eter Q. (If T and Q were both choice parameters, then
the retailer would surely choose T � 0, i.e., it would
choose a (Q, S) policy.) With both periodic review
policies, orders for product i are generated with a
base-stock policy, where Si is the base-stock level.

Expected cost with an (Q, S � T ) policy is evaluated
in two main steps. The first evaluates the expected
transportation cost, and the second evaluates the non-
transportation costs. The expected cost of an (S, T )
policy is the same as the expected cost of a (Q, S � T )
policy with Q � 1. As with the (Q, S) policy, a (Q,
S � T ) policy is a ‘‘full truck’’ policy when Q � C.

Begin with more notation. Let IPi be product i’s
inventory position (on-hand plus on-route inventory

minus backorders) immediately before a review ep-
och. Let IPi be product i’s inventory position imme-
diately after a review epoch. Define B̄i to be product
i’s outstanding orders immediately before a review
epoch, B̄i � Si � IPi, and let B̄ be the total number of
outstanding orders at that time,

N
¯ ¯B � B .� i

i�1

Note that B̄ is the total amount of available shelf space
immediately before a review epoch. Let Bi be the
available shelf space for product i immediately after
a review epoch, and let B be the total available shelf
space; B̄i � Bi � D andT

i

B̄ � B � DT, (4)

where B ∈ [0, Q � 1].
At the review epoch in consideration, the retailer

will dispatch m(B̄) trucks, where

x � Q
m(x) � � 1.[ ]C

The probability that at least one truck will be dis-
patched at the review epoch is Pr(B̄ � Q). The ex-
pected truck utilization, �(Q), is therefore

�1 ¯�(Q) � Pr(B � x)�¯Pr(B � Q) x�Q

�C � [m(x)C � x] 1
� m(x) � 1 � . (5)� �C m(x)

The expected transportation cost per unit is K/�(Q)C,
and the expected transportation cost per unit time is
�K/�(Q)C.

The distribution function of B̄ is required to eval-
uate (5). From (4), B̄ is a simple convolution of B and
DT, because they are independent. So, it remains to
evaluate the distribution function of B.

There are three cases to consider: Q � 1, 1 � Q �
C, and Q � C. When Q � 1, a full service policy is
implemented: All outstanding orders at a review ep-
och are shipped. In that case

1 x � 0
Pr(B � x) � 	0 x 	 0.

With a full truck policy, Q � C, the warehouse op-
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erates as if it is using a periodic review, reorder point
policy with the reorder point equal to �C: Every C
demands triggers a truck dispatch at the subsequent
review epoch. In that case, B is uniformly distributed
on the interval [0, Q � 1].

When 1 � Q � C, the warehouse’s outstanding or-
ders immediately after a review epoch is a Markov
process. Simulation is one technique to evaluate the
distribution function of B. The analytical approxi-
mation that follows is an alternative.

Let Bj be the number of outstanding orders im-
mediately after a review epoch when the jth previous
review epoch had zero outstanding orders and all re-
view epochs after that one had at least one outstand-
ing order. For clarification, the 0th previous epoch is
the epoch in consideration; hence, Pr(B0 � 0) � 1.

Define the state of the system to be the number of
successive review epochs to have occurred in which
all of the epochs had a positive number of outstand-
ing orders; hence the system is in state 0 at time 

when the last review epoch to occur before time 
 had
zero outstanding orders. Let �j be the proportion of
time in which the system is in state j. The system
either transitions from state j to state j � 1 or the
system transitions from state j to state 0. Let �j be the
probability the system transitions from state j � 1 to
state j, j � 1. Therefore, 1 � �j�1 is the probability the
system transitions from state j to state 0.

The �j probabilities and the distribution functions
Bj are evaluated with a system of recursive equations.
Define B̄j � Bj�1 � DT: B̄j is the number of outstand-
ing orders immediately before a review epoch in
which there were Bj�1 outstanding orders immediate-
ly following the previous review epoch. It then fol-
lows that

�

j¯� � [Pr(B � mC � Q � 1)�j
m�0

j¯� Pr(B � mC)] and (6)
�1

j j j¯ ¯Pr(B � x) � [Pr(B � mC � x) � Pr(B � mC)].�
� m�0j

(7)

Because Pr(B0 � 0) � 1, the recursion begins with B̄1

� DT. Next, from (6), �1 is evaluated and then, from

(7), B1 is evaluated. The remaining recursion is then
apparent: �2, B2, �3, B3, etc.

There are an infinite number of states in this Mar-
kov chain, but the probability of reaching state j de-
creases in j. Therefore, as an approximation, suppose
that the system always transitions from state M to
state 0 for some large M, i.e., �M�1 � 0. The accuracy
of the approximation increases in M, but so does the
computational effort. It follows that

M�1
 � (1 � � ) � � i � 0� i i�1 M
 i�0� �i 
� � i 	 0 i i�1

and

M

� � 1.� i
i�1

Solving that system of equations yields

 1
i � 0jM�1

1 � �� 
 k
j�1 k�1
i� � i

�
 j
j�1

i 	 0.jM�1 1 � �� 
 k j�1 k�1

Finally,

M
iPr(B � x) � � Pr(B � x).� i

i�0

Attention is now turned to the nontransportation
costs. Let gi(y, t) be expected holding and backorder
costs for product i at time 
 � t, t � L, when the
product’s inventory position is y at time 
 and no ad-
ditional shipments will be made before time 
 � t:

t � t �g (y, t) � E{h [y � D ] � p [y � D ] }i i i i i

�

� h (y � � t) � (h � p ) (x � y) f (x, t).�i i i i i
x�y�1

Note that
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� �

xf (x, t) � � t f (x � 1, t)� �i i i
x�y�1 x�y�1

� � t[1 � F (y � 1, t)],i i

so the above can be simplified further,

g (y, t) � (h � p )[yF (y, t) � � tF (y � 1, t)]i i i i i i

� p (y � � t). (8)i i

Let Gi(y, T ) be expected costs over the interval of
time [
 � L, 
 � L � T ] when product i’s inventory
position is y at time 
 and that is a review epoch,

L�T

G (y, T ) � g (y, t) dt.i � i
L

The above is easy to evaluate for y � 0, since then

L�T

G (y � 0, T ) � �p (y � � t) dti i � i
L

T
� p T � L � � y . (9)i i� � � �2

To evaluate Gi(y, T ) for y 	 0, first differentiate (8)
with respect to t,

dg (y, t)i � �� [g (y, t) � g (y � 1, t)],i i idt

where note that dFi(y, t)/dt � ��i f i(y, t). Therefore,

G (y, T ) � G (y � 1, T )i i

L�T

� [g (y, t) � g (y � 1, t)] dt� i i
L

L�T1 dg (y, t)i� � dt�� dti L

1
� � [g (y, L � T ) � g (y, L)].i i�i

The above immediately provides a recursive equation
to evaluate Gi(y, T ) for y 	 0, where (9) provides Gi(0,
T ),

g (y, L � T ) � g (y, L)i iG (y) � G (y � 1) � .i i �i

Thus, expected holding and backorder costs occur at
an average rate Gi(y)/T over the interval.

Expected holding and backorder costs per unit
time for product i occur at rate

Q�11 1
E[G (S � B , T )] � Pr(B � j)G (S � j, T ).�i i i i i iT T j�0

The distribution function of Bi is required to evaluate
the above. Those distributions depend on the alloca-
tion policy, which is the policy for deciding which
products will be shipped and which will not be
shipped. A simple allocation policy is first-come-first-
serve: products are loaded into trucks in the sequence
in which they are ordered. In that case Bi is binomi-
ally distributed with success probability i and B
draws

Q�1

Pr(B � x) � Pr(B � j)Pr(Z ( j) � x). (10)�i i
j�x

There are probably better allocation policies than
first-come-first-serve. Those policies would prioritize
the products based on the demand and cost charac-
teristics so that the ‘‘neediest’’ products would be as-
sured priority in any shipment. Unfortunately, with
those policies the analytical evaluation of Bi is very
cumbersome. Thus, if a more complex allocation al-
gorithm were used, either (10) can be taken as an
approximation or Bi could be evaluated via simula-
tion.

Now it is possible to express the expected average
cost of a (Q, S � T ) policy, �(Q, S, T ),

NK 1
�(Q, S, T ) � � � aS � E[G (S � B , T )] .� i i i i� ��(Q)C Ti�1

The first term is the expected transportation cost, the
second is the shelf-space cost, and the third term is
the expected holding and backorder costs. For fixed
Q and T, it is straight-forward to find the optimal S
because �(Q, S, T ) is convex in each Si. (Note that Bi

is independent of Si.) The optimal (Q, S � T ) policy is
found via a search over the interval Q ∈ [1, C]. The
optimal (S, T ) policy is found via a search over the
parameter T. Although an upper bound on the search
interval has not been developed, it is intuitive that
the search can be terminated when T is substantially



CACHON
Managing a Retailer’s Shelf Space, Inventory, and Transportation

MANUFACTURING & SERVICE OPERATIONS MANAGEMENT

Vol. 3, No. 3, Summer 2001222

greater than C/�: Average total demand over an in-
terval of length C/� equals C, so there will be several
full trucks waiting to be shipped at each review ep-
och when T k C/�.

5. Lower Bound
The optimal policy is not known for this problem.
Nevertheless, the policies described in the previous
sections are intuitively reasonable and analytically
tractable. The objective of this section is to determine
how much better an optimal policy could be relative
to those feasible policies. This is done by evaluating
a lower bound over all feasible policies.

The retailer’s problem is complex because the cost
of ordering one product depends on the ordering de-
cision of the other products: Because a truck costs K
per delivery no matter the number of products deliv-
ered (up to the capacity of C units), the cost of or-
dering a product may be high if the order triggers
another delivery, or it may be low if the order merely
fills space in an already committed delivery. Of
course, this complication disappears if there is only
one product; a single-product retailer would be un-
usual. It also disappears if trucks carry at most one
product; in that case, product i’s ordering costs only
depend on its order quantity and not on the order
quantity of the other products. The latter insight is
the foundation for the lower bound proposed by At-
kins and Iyogun (1988): Each product i is delivered
with its own truck of capacity C and incurs a deliv-
ery charge �iK, where � �i � 1. That is, theirN

i�1

bound decomposes the problem into N independent
problems, and in each of those problems the optimal
policy is known. (It is an order point, order-up-to
policy).

The bound developed in this section allocates de-
mand among the products instead of the delivery
cost. The basic idea is simple. Under actual operations
each customer demands precisely one unit from one
product. Under demand allocation each customer de-
mands i � �i/� from product i, so each customer’s
total demand is still one unit, � i � 1. Hence, un-N

i�1

der actual operations there are two components to
demand uncertainty—the timing of customer arrivals

and each customer’s product choice—whereas with
demand allocation there is only component to de-
mand uncertainty—the timing of customer arrivals.

The next step is to show that the minimum cost
under demand allocation is indeed a lower bound for
cost under actual operations. Let IPi(
) be product i’s
inventory position at time 
. Assume the (unknown)
optimal policy is implemented. Under that policy

N
tE[g (IP (
) � D , L)]� i i i

i�1

is the expected sum of holding and backorder costs
at time 
 � L. Define the following cost function

bg (y) � g ( y , L) � (y � y )(g ( y , L) � g ( y , L)),i i     i   i  

where note that gi(y, L) � g (y) for integer values ofb
i

y, otherwise g (y) is a weighted average of gi( y , L)b
i

and gi( y , L). Because g (y) is convex, it follows thatb
i

N N
t b tE[g (IP (
) � D , L)] � E[g (IP (
) �  D )]. (11)� �i i i i i i

i�1 i�1

The latter term is the expected sum of holding and
backorder costs under demand allocation. So costs
under demand allocation are never greater than op-
timal costs under actual operations; the optimal pol-
icy under demand allocation is a lower bound.

It remains to evaluate the optimal policy under de-
mand allocation. Begin with the problem of minimiz-
ing product i’s inventory and shelf-space costs under
demand allocation, i.e., when each customer demands
i units of product i. Furthermore, impose the con-
straint that the average shipment quantity should be
no less than qi units, where qi is some integer multiple
of i units. When a � 0, a reorder point policy min-
imizes the inventory cost subject to the shipment con-
straint because g is convex. Let ri(qi) be that optimalb

i

reorder point,
q /i i1

br (q ) � min g (r � j ).�i i i iq /r j�1i i

The problem is more complex when a 	 0. Shelf
space is charged in unit increments, but because the
product’s inventory position changes only in multi-
ples of i � 1 units, the product’s maximum inventory
position under the optimal policy may be less than
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its shelf space. Let s̄i be the required shelf space if a
(ri(qi), qi) reorder point policy is implemented, s̄i �
 ri(qi) � qi , where unused shelf space is possible, s̄i

	 ri(qi) � qi. It is never optimal to have more than s̄i

units of shelf space: the (ri(qi), qi) reorder point policy
would minimize the inventory costs, so the extra shelf
space would be wasted. Further, if s̄i units of shelf
space are assigned, then the (ri(qi ), qi) reorder point
policy is optimal: Increasing or decreasing the reor-
der point, while requiring s̄i units of shelf space, only
increases the inventory cost. If fewer than s̄i units of
shelf space are assigned, then the optimal policy is
still a reorder point policy, but in this case the max-
imum inventory position must equal the shelf space.5

Hence, let r (qi) be the optimal reorder point given qi,*i
q /i i1

br*(q ) � min a r � q � g (r � j )�i i  i i iq /r j�1i i

s.t.

r ∈ {�q , �q � 1, . . . , s̄ � 1 � q , s̄ � q }i i i i i i

Note that r � �qi is never optimal because g (y) de-b
i

creases linearly for y � 0. The optimal shelf space for
product i is s (qi) �  r (qi) � qi .* *i i

Now consider the problem of minimizing the sum
of all costs under demand allocation. For any policy
the average transportation cost per unit is K/Qb,
where Qb is the average shipment quantity, and the
average transportation cost per unit time is (K/Qb)�.
Given Qb, the optimal policy must minimize the sum
of the product’s inventory and shelf-space costs. That
is achieved with the reorder point r (qi), the shelf*i
space s (qi), and the order quantity qi � iQb for each*i
product i. With that policy a truck is dispatched every
Qb customer arrivals with a total of Qb units on
board, qi units for product i are included on each
shipment, and each truck dispatch raises each prod-
uct’s inventory position to r (qi) � qi, i.e., the inven-*i
tory positions of the products are synchronized so

5A reorder point policy is optimal because (1) if the maximum in-
ventory level were less than the shelf space, then the average inven-
tory cost could be reduced by shifting the inventory level so that
the shelf-space constraint binds, and (2) because g is convex, ab

i

reorder point policy minimizes the inventory cost subject to the
constraint that the average shipment quantity is no less than qi.

that they all reach their reorder point on the same
customer arrivals. Because it is never optimal to delay
the shipment of a full truck, the best Qb is found via
search,

K
bQ � argmin �

QQ ∈ [1,C]

N Q1
b� as*( Q) � g [r*( Q) � j ] .� �i i i i i i� �Qi�1 j�1

The above policy is optimal under demand allocation;
its expected cost is the sought after lower bound.

In the multiechelon inventory literature, several
lower bounds have been developed around the idea
of free-inventory rebalancing: At any moment in time,
inventory can be moved instantly from one location/
product to another without cost (see Federgruen and
Zipkin 1984b, 1984c, 1984d; Chen and Zheng 1994).
In effect, for each customer arrival the retailer is able
to choose which of the N products the customer de-
mands. Given that ability, to minimize costs the re-
tailer selects the product that has the least cost im-
pact. That bound could be evaluated in this system,
but in some settings that bound is not as effective as
the demand allocation bound. To explain, consider an
extreme setting in which L � 0 and pi � pj � p, where
p is very large. If K were sufficiently low, the retailer
would assign no shelf space across all products and
ship trucks with only one unit. Each product’s inven-
tory position would always equal zero (due to L � 0
and the single unit shipments), and so average cost
per unit time would just be the average transporta-
tion cost, �K. Now suppose K is sufficiently large so
that it may be necessary to ship more than one prod-
uct per truck. Because backorders are costly, the re-
tailer must allocate some shelf space to store product.
It is expensive to allocate one unit of shelf space
across all N products. Furthermore, it is unnecessary.
Given the ability to choose which product each cus-
tomer demands, the retailer need assign only one unit
of shelf space to the product with the lowest per unit
holding cost. Then, as customer arrivals occur the re-
tailer always selects that product for its customers:
Only one unit of shelf space is required to accom-
modate the two unit shipments. But, that strategy
does not work if each customer demands a little bit
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Table 1 Average Truck Utilization with Optimal (Q, S) Policy

K/C

C/� � 1
L

0 1 4

C/� � 4
L

0 1 4 �

N

4 16 32

0.25
1
4

27.4%
56.0%
91.0%

37.0%
71.1%
98.1%

43.0%
78.6%
99.5%

14.0%
31.3%
64.8%

18.2%
34.8%
69.7%

20.3%
39.2%
74.6%

4
16
32

55.7%
57.6%
57.6%

48.0%
54.6%
56.2%

47.2%
52.8%
54.6%

Table 2 Distribution of the Ratio of the Heuristic Cost to the Optimal (Q, S) Policy Cost

Policy Minimum Median 90th Percentile 95th Percentile Maximum Average

Q-heuristic/S-optimal
Q-optimal/S-heuristic
Q-heuristic/S-heuristic

1.000
1.000
1.000

1.001
1.010
1.054

1.044
1.489
1.520

1.071
1.810
1.984

4.500
2.796
4.500

1.037
1.157
1.196

(i ) of every product, because then each customer de-
mand generates backorders for the N � 1 products
that have not been allocated shelf space. Hence, with
the demand allocation bound it is necessary to allo-
cate shelf space across all products; it yields a better
bound.

6. Numerical Study
This section details a numerical study that evaluates
the policies developed in §§3 and 4 as well as the
lower bound developed in the previous section.

From all combinations of the following sets, 972
scenarios were constructed:

h � {1} N � {4, 16, 32} C � {�, 4�}i

p � {4, 16, 32} � � {4, 16, 32} K � {C/4, C, 4C}i

a � {1, 4} � � {�/N} L � {0, 1, 4}.i

In all scenarios the products are identical (same mean
demand, holding and backorder cost rates). Truck ca-
pacity is chosen relative to total system demand;
when C � �, average total demand fills a truck each
unit of time, whereas average demand takes four
times longer to fill a truck when C � 4�. The trans-
portation cost is defined as the minimum possible
transportation cost per unit: Each unit incurs a K/C
� {¼, 1, 4} transportation cost if 100% utilization is
maintained.

For each scenario, the optimal (Q, S) policy was
evaluated. Table 1 presents data on truck utilization,
Q/C, with the optimal (Q, S) policy. As expected,
truck utilization increases sharply with the minimum
transportation cost per unit K/C. As conjectured,
truck utilization increases with L and �, and decreas-
es as the product line becomes more fragmented (N
increases). However, the impact of � or N is less sig-
nificant than the impact of either K/C or L.

Table 2 presents data on the performance of three
heuristic (Q, S) policies, where the policies differ on
which parameters are chosen by heuristic. The first
policy uses the Q-heuristic but chooses the optimal
shelf space, i.e., Q � Q̃ and Si � S (Q). That policy*i
provides excellent performance relative to the optimal
(Q, S) policy: Average cost across the scenarios is only
3.7% higher than the optimal (Q, S) policy cost, and
for 95% of the scenarios that policy’s cost is within
7.1% of the optimal cost. The second policy uses the
optimal Q and uses the S-heuristic to choose shelf
space. Although median performance of this policy is
reasonable (within 1% of the optimal), there are a
number of scenarios in which performance is poor:
Ten percent of scenarios have costs that are at least
48.9% higher than optimal. The third policy uses both
heuristics. That policy yields the worst performance:
The median cost increase over the optimal (Q, S) pol-
icy is 5.4%, but for 10% of the scenarios that policy’s
cost is more than 52% higher than optimal. To sum-
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Figure 1 Cost Function with a (Q, S) Policy Figure 2 A Scenario in Which the Q-Heuristic/S-Optimal Policy Makes
a Poor Choice (N � 32, L � 4, a � 1, p � 32, L � 0, C �
16, K � 16)

Table 3 The Ratio of the Q-Heuristic Policy Cost (with Optimal Shelf-Space Choice) to the Optimal (Q, S) Policy Cost

L
N

0
4

0
16

0
32

1
4

1
16

1
32

4
4

4
16

4
32

Average
Maximum

1.040
2.375

1.121
4.500

1.153
4.500

1.002
1.022

1.004
1.036

1.007
1.064

1.002
1.011

1.002
1.009

1.001
1.013

marize, the Q-heuristic provides a good choice for Q,
hence, it provides retailer with an easy way to check
its transportation utilization, Q/C. However, the S-
heuristic does not provide sufficiently robust perfor-
mance.

Figure 1 displays the cost function for one scenario
in which the first heuristic policy (Q-heuristic/S-opti-
mal) performs well (N � 16, � � 16, a � 1, p � 32, L
� 0, C � 64, K � 64). It is clear from the figure why
the Q-heuristic is effective: The nontransportation cost
is an approximately linear increasing function.

Even with the first heuristic policy there are a few
scenarios in which performance is significantly worse
than optimal: There are six scenarios (out of 972) in
which the policy’s cost is more than 50% higher than
the optimal cost. Table 3 indicates when the first pol-
icy performs well: long lead time and narrow product
line (low N). Figure 2 graphs expected cost for a sce-
nario in which the first heuristic policy performs
poorly. It is clear that expected cost is not convex in
Q. The heuristic makes a poor choice because it fails
to recognize the benefit of operating with very low
transportation utilization.

Figures 3 and 4 reveal the sensitivity of costs to the
chosen Q. In Figure 3 two cases are considered: Q is
set 25% above the optimal, Q � min{1.25Q*, C}, or Q
is set 50% above the optimal, Q � min{1.5Q*, C}. Two
scenarios are also considered in Figure 4: Q is set to
75% of the optimal, Q � 0.75Q*, or Q is set to half of
the optimal, Q � 0.5Q*. In all cases Q is rounded to
the nearest integer, and the optimal shelf space is
chosen given Q. Scenarios are placed into 10 groups,
based on their optimal policy transportation utiliza-
tion. The figures display averages and maximums for
each group of scenarios. Each modification of Q gen-
erally increases costs by less than 10%. However,
there are some scenarios in which a significant pen-
alty can occur by increasing Q if the optimal trans-
portation utilization is quite low (say 25%). There
may also be significant penalties for choosing Q too
low if the optimal transportation utilization is quite
high (say 95%). Nevertheless, the data indicate that
costs are relatively insensitive around the optimal,
Q*, assuming the optimal shelf space is chosen with
the implemented Q.

Table 4 provides data on the performance of (Q,
S � T ) policies for the following values of T/(C/�) ∈
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Figure 3 Sensitivity of Costs to Increases in Q, Assuming Optimal Shelf-Space Assignment

Figure 4 Sensitivity of Costs to Decreases in Q, Assuming Optimal Shelf-Space Assignment
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Table 4 Ratio of (Q, S � T) Policy Cost to Optimal (Q, S) Policy Cost

T/(C/�) Minimum 5% Average 95% Maximum

0.1
0.2
0.5
1
2

1.000
1.001
1.003
1.017
1.055

1.001
1.003
1.007
1.031
1.114

1.056
1.102
1.224
1.540
2.219

1.104
1.281
1.929
3.067
5.620

4.101
5.010
8.539

16.353
32.297

Table 5 Average Ratio of (Q, S � T) Policy Cost to Optimal (Q, S) Policy
Cost

T(C/�)

L

0 1 4

0.1
0.2
0.5
1
2

1.152
1.267
1.553
2.229
3.562

1.011
1.029
1.088
1.283
1.768

1.004
1.010
1.031
1.109
1.327

{0.1, 0.2, 0.5, 1, 2}.6 The T values are chosen relative to
the ratio C/� because C/� is the time required for
average total demand to fill a truck. The table indicates
that periodic review policies may perform reasonably
well for low values of T, but generally perform quite
badly for large values of T. Thus, if a retailer chooses
to operate with a periodic shipping interval during
which mean demand approximately equals one truck
load, then that retailer’s cost probably could be re-
duced substantially if it were to switch to a continuous
review shipping policy. According to Table 5, this is
particularly true if the retailer has a small lead time
between its warehouse and its store; when the ware-
house to store lead time is short, each product’s inven-
tory cost is sensitive to deviations about the ideal in-
ventory position, so an increase in T is particularly
costly in that case because increasing T reduces the
retailer’s ability to keep each product’s inventory po-
sition close to its ideal.

Table 6 displays data on the performance of full ser-
vice periodic review policies (Q � 1) when the retailer
can choose T. Table 7 gives the optimal period length

6First-come, first-serve allocation is assumed. To evaluate the B dis-
tribution function, M is chosen such that the probability of reaching
state M is less than 0.000001.

relative to the average time to fill a truck. These poli-
cies do quite well (even in the worse case) when there
are long lead times and low transportation costs. In
contrast, their performance deteriorates sharply as L
decreases. Hence, if the retailer has the capability to
make quick deliveries between its warehouse and its
store, it should be wary of operating a full service pe-
riodic review policy. However, if the retailer believes
that the benefit of these policies (e.g., the operational
simplicity of knowing that every order will always be
filled) outweighs the cost, the retailer should generally
choose a period length that is significantly smaller
than the average time to fill a truck (Table 7).

Among the set of feasible policies considered, the
continuous review (Q, S) policy clearly performs the
best. Table 8 indicates how that policy performs rel-
ative to the best lower bound. The gap between the
best feasible policy and the lower bound is quite
small when the ratio p/a is small. Indeed, in about
15% of the scenarios (141 of them) the bound is tight,
which means that the (Q, S) policy is in fact optimal.
Nevertheless, the gap increases significantly as the p/
a ratio increases. Backorder costs dominate when p/
a is large, and so, the optimal (Q, S) policy will tend
to assign a significant amount of shelf space to each
product. It is possible that there exists a better feasi-
ble policy for managing that shelf space; however, it
is also possible that the bound is poor in those sce-
narios. Additional research is needed to resolve that
issue. (Incidentally, for all of the scenarios tested, the
demand allocation bound provided a better bound
than either the setup cost allocation bound or the in-
ventory rebalancing bound.)

7. Conclusion
This research studied the management of transpor-
tation, shelf space, and inventory costs for a retailer
that sells multiple products with stochastic demand.
Three operating polices were compared. The contin-
uous review, minimum quantity policy, or (Q, S) pol-
icy, performed better than the two periodic review
policies. It even compared well against a lower bound
developed for this model. However, the advantage of
the (Q, S) policy over the periodic review policies
should be tempered by the additional implementation
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Table 6 Ratio of Full Service Policy Minimum Cost to Optimal (Q, S) Policy Minimum Cost

K/C

L � 0

Min. Average Max.

L � 1

Min. Average Max.

L � 4

Min. Average Max.

0.25
1
4

1.021
1.010
1.006

1.431
1.152
1.132

4.028
2.012
1.407

1.006
1.007
1.004

1.035
1.040
1.080

1.111
1.132
1.226

1.002
1.003
1.002

1.011
1.016
1.045

1.029
1.065
1.137

Table 7 Ratio of Full Service Policy T to C/�

K/C

L � 0

Min. Average Max.

L � 1

Min. Average Max.

L � 4

Min. Average Max.

0.25
1
4

0.06
0.14
0.26

0.20
0.41
0.70

0.46
0.78
1.34

0.06
0.18
0.34

0.27
0.48
0.75

0.54
0.94
1.38

0.10
0.18
0.38

0.31
0.53
0.79

0.62
0.98
1.54

Table 8 Ratio of Lower Bound Cost to Optimal (Q, S) Policy Cost

p/a

L

0 1 4

Minimum 1
4
8

16
32

1.000
0.753
0.668
0.588
0.513

1.000
0.870
0.878
0.837
0.804

1.000
0.944
0.956
0.918
0.918

Average 1
4
8

16
32

1.000
0.930
0.856
0.789
0.728

1.000
0.967
0.967
0.940
0.935

1.000
0.988
0.990
0.977
0.975

Maximum 1
4
8

16
32

1.000
1.000
1.000
1.000
1.000

1.000
1.000
1.000
1.000
1.000

1.000
1.000
1.000
1.000
1.000

challenges of operating with continuous (i.e., real
time) inventory review and truck dispatching. Fur-
thermore, the retailer should be aware that the ad-
vantage of the (Q, S) policy depends strongly on the
warehouse to store lead time: The advantage is small
when the lead time is long, but the advantage grows
significantly as the lead time is reduced. Hence, if a
retailer is able to reengineer its supply chain so that
its warehouse to store lead time is decreased, the re-
tailer will gain additional operational benefits by

switching from periodic truck replenishment to con-
tinuous review truck replenishment.

Even though the model studied has stochastic de-
mand, the behavior of the model is remarkably like
the well-known deterministic demand economic or-
der quantity (EOQ). In particular, the retailer’s cost is
relatively insensitive to the optimal transportation
utilization: For example, if a retailer operates with a
transportation utilization that is one and a half times
greater than the optimal transportation utilization,
then (for the scenarios tested) the retailer’s total ex-
pected cost is generally no more than 10% higher
than optimal. In addition, the EOQ structure leads to
a simple, but very effective, heuristic for choosing the
retailer’s transportation utilization, i.e., the Q in the
(Q, S) policy.

In addition to the connection to the EOQ model,
there is a strong relationship between this model and
the multiechelon inventory models with multiple re-
tailers and stochastic demand. Indeed, the analysis of
the (Q, S) policy is exactly the same as the analysis
of reorder point policies in Axsäter (1993). However,
although the lower bounds developed for the multi-
echelon inventory models could be applied to this set-
ting, a better bound for this model was developed.
That bound relaxes the constraint that each demand
occurs only for one product, i.e., in the demand al-
location lower bound each system demand is propor-
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tionally divided among all of the products. Future
research will determine if the demand allocation low-
er bound can improve upon the current bounds for
multiechelon inventory models.
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