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The newsvendor model is designed to decide how much of a product to order when the product is to be soldover a short selling season with stochastic demand and there are no additional opportunities to replenish
inventory. There are many practical situations that reasonably conform to those assumptions, but the traditional
newsvendor model also assumes a fixed salvage value: all inventory left over at the end of the season is sold off
at a fixed per-unit price. The fixed salvage value assumption is questionable when a clearance price is rationally
chosen in response to the events observed during the selling season: a deep discount should be taken if there is
plenty of inventory remaining at the end of the season, whereas a shallow discount is appropriate for a product
with higher than expected demand. This paper solves for the optimal order quantity in the newsvendor model,
assuming rational clearance pricing. We then study the performance of the traditional newsvendor model. The
key to effective implementation of the traditional newsvendor model is choosing an appropriate fixed salvage
value. (We show that an optimal order quantity cannot be generally achieved by merely enhancing the tradi-
tional newsvendor model to include a nonlinear salvage value function.) We demonstrate that several intuitive
methods for estimating the salvage value can lead to an excessively large order quantity and a substantial profit
loss. Even though the traditional model can result in poor performance, the model seems as if it is working
correctly: the order quantity chosen is optimal given the salvage value inputted to the model, and the observed
salvage value given the chosen order quantity equals the inputted one. We discuss how to estimate a salvage
value that leads the traditional newsvendor model to the optimal or near-optimal order quantity. Our results
highlight the importance of understanding how a model can interact with its own inputs: when inputs to a
model are influenced by the decisions of the model, care is needed to appreciate how that interaction influences
the decisions recommended by the model and how the model’s inputs should be estimated.
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The newsvendor model is certainly among the most
important models in operations management. It is
applied in a wide variety of areas: centralized and
decentralized supply chain inventory management
(e.g., Shang and Song 2003, Cachon 2003), retail assort-
ment planning (e.g., Van Ryzin and Mahajan 1999),
international operations (e.g., Kouvelis and Gutierrez
1997), horizontal competition among firms facing
stochastic demand (e.g., Lippman and McCardle
1995), lead time competition (e.g., Li 1992), outsourc-
ing and subcontracting decisions (e.g., Van Mieghem
1999), product and process redesign (Fisher and
Raman 1996, Lee 1996), and spot markets and inven-

tory control (e.g., Lee andWhang 2002), to name a few.
It is taught in most introductory courses in operations
management and is described in detail in most opera-
tions management textbooks.
The newsvendor model is not complicated: an

order quantity is the only decision; the purchase cost
per unit is c; units are sold during a selling season
for a fixed price, p; demand is stochastic during the
selling season with a known distribution; sales are
bounded by the order quantity; and leftover inven-
tory is salvaged at the end of the season for a fixed
salvage value per unit, v. However, in many prac-
tical applications of the model the per-unit salvage
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value is not fixed, but rather depends on a clearance
pricing decision: a small discount is needed with a
popular product in short supply, whereas a deep dis-
count is needed with an unpopular product in ample
supply. In other words, with clearance pricing the sal-
vage value depends on both the amount of inven-
tory ordered and the correlation of demand across
time, neither of which are directly accounted for in
the newsvendor model.
The focus of this paper is the performance of the

newsvendor model in situations with clearance pric-
ing. The key to the successful implementation of
the newsvendor model is choosing the correct sal-
vage value to input to the model, i.e., the salvage
value that leads the newsvendor model to choose the
order quantity that maximizes expected profit, given
that the clearance price is chosen optimally to max-
imize clearance-period revenue. We consider several
intuitive methods for estimating the salvage value
and evaluate them based on their equilibrium perfor-
mance. To explain, consider the following quote that
describes the economics of selling fashion ski apparel,
as faced by Sport Obermeyer (Hammond and Raman
1994, p. 8): “units left over at the end of the season
were sold at a loss that averaged 8% of the � � �price.”
That 8% figure leads to a salvage value, but it depends
on how much Sport Obermeyer ordered. Had Sport
Obermeyer ordered twice as much as it did, then its
historical losses would have been higher (because the
company would have had more parkas to discount,
causing deeper discounts). Hence, we evaluate the
performance of each method when the expected sal-
vage value, given the chosen order quantity, equals
the inputted salvage value that leads the newsvendor
model to recommend the chosen order quantity. In
other words, in equilibrium the input to the newsven-
dor model is consistent with the observed outcome.
We find that, even in equilibrium, several intu-

itive salvage-value estimation methods overestimate
the correct salvage value, leading to significant profit
losses. In fact, when the optimal order quantity is
chosen, we find in many situations that those meth-
ods estimate the salvage value to be greater than
the marginal cost of purchasing the product; the
newsvendor model foolishly recommends ordering
an unlimited quantity. We provide a simple salvage-
value estimation method that yields near-optimal per-
formance when demand is highly correlated across

the season (which is likely for products, like apparel,
that have variable clearance pricing). We also discuss
a more complex method that leads to the optimal sal-
vage value.
Section 1 defines our model, §2 reviews the related

literature, §3 identifies the optimal procurement quan-
tity, §4 defines and analyzes several salvage-value
estimation rules, §5 presents some numerical results,
and §6 discusses our results.

1. The Newsvendor and the
Clearance-Pricing Models

In this section we define the two models we study.
The first is the traditional newsvendor model, which
requires a fixed salvage value as one of its inputs.
The second is the clearance-pricing model, which is
identical to the newsvendor model with the exception
that it explicitly incorporates the clearance-pricing
decision.
In the newsvendor model, a firm purchases q units

before a single selling season with random demand,
and pays c per unit. There are no constraints on q (i.e.,
no capacity constraint), but only a single procurement
is feasible. The selling season is divided into two peri-
ods. In Period 1, the regular season, the retailer sells
each unit for p1 > c. In Period 2, the clearance period,
the retailer sells all remaining inventory for v per unit,
v < c. Let � ∈ 	0
�� be the realization of demand in
Period 1. Let F ·� be the strictly increasing and differ-
entiable distribution function of demand, and let f ·�
be the density function. The objective in the newsven-
dor model is to choose an order quantity q to maxi-
mize expected profit. The clearance-pricing model is
nearly identical to the newsvendor model except that
at the start of the clearance period, a clearance period
price, p2, is chosen to maximize revenue in the clear-
ance period given the available inventory, Iq
 ��. We
assume p2 ≤ p1, which is reasonable in some situations
and de facto imposed by many firms. We assume
that the inventory left over at the end of the clear-
ance period has zero constant salvage value. Instances
with nonzero salvage value w can be transformed to
a problem with zero salvage value by subtracting w
from p1 and c, and using p2+w in the second-period
demand function.
Period 2 demand, D2p2
 ��, is a deterministic func-

tion of the clearance price and the realization of
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Period 1 demand. D2p2
 �� is nonnegative, differ-
entiable, and decreasing in p2. Hence, the inverse
demand function exists, p2s2
 ��. It is reasonable to
assume D2 depends on � if total sales are highly cor-
related with early season sales, for which there is evi-
dence (Fisher and Raman 1996, Fisher et al. 2001).
Let s2 be Period 2 sales. We make the follow-

ing two technical assumptions: Period 2 revenue,
s2p2s2
 ��, is concave in s2 for all �; and p̂2�� < p1
for all �, where p̂2��= argmaxp2D2p2
 ���—i.e., the
Period 2 revenue-maximizing price is no larger than
the Period 1 price. (For expositional simplicity, in all
references to concavity we mean strict concavity.) The
first assumption ensures that the profit function is
well behaved in q. The second assumption implies
that with unlimited inventory the optimal clearance
price is lower than p1, i.e., discounting in the second-
period is rational if there is plenty of inventory left
over.
We assume D2p2
 �� is monotone in � for all p2.

While it is natural to think of D2p2
 �� as an increas-
ing function of � (a product with high regular-season
demand also has high clearance-period demand), we
also allow �D2p2
 ��/�� = 0 (i.e., regular-season and
the clearance-period demands are independent) and
�D2p2
 ��/�� < 0 (i.e., high regular-season demand
saturates the market, thereby lowering demand in the
clearance period). However, for tractability, �D2p2
 ��/
�� cannot be too negative: we require that � +
D2p̂2��
 �� and � + D2p1
 �� are continuous and
increasing in �. These conditions imply that total
demand across the two periods increases in �.
A form of D2p2
 �� that meets our requirements

can be constructed by using a multiplicative shock
x�� in combination with a commonly used demand
function such as the constant elasticity demand func-
tion, D2p2
 ��= x���p−�2 for �> 1 or the exponential
demand function, D2p2
 ��= x���e−�p2 for 1/� < p1.
(The condition on � with exponential demand ensures
p̂2�� < p1�� There is substantial evidence to support
both demand forms, and both have been observed to
fit actual data better than linear demand; see Mulhern
and Leone (1991), Hoch et al. (1995), and Tellis (1988).

2. Literature Review
The literature related to this research can be divided
into several broad categories: papers that discuss vari-
ations on the newsvendor model; papers on pricing

without multiple inventory replenishments; research
on multiperiod pricing and inventory problems; and
research on the robustness of heuristics, especially as
applied to inventory models.
A number of papers enrich the newsvendor model

along one or more dimensions. Instead of a loss func-
tion that is linear in the excess inventory, Porteus
(1990) considers a loss function that is quasi-convex in
the excess inventory quantity. He provides conditions
under which the objective function is well behaved.
We demonstrate that in the clearance-pricing model
the loss function is convex. These models assume
the nonlinear salvage-value function is known and
accurate, i.e., there is no discussion of how that func-
tion could be estimated or how sensitive the perfor-
mance of the model is to that estimation, or whether it
applies in situations with correlated demand. Petruzzi
and Dada (1999) and Agrawal and Seshadri (2000a)
study a newsvendor that chooses both a quantity and
a price, but in both cases the newsvendor chooses
the regular season price, not the clearance price; they
assume a fixed salvage value for inventory remaining
at the end of the regular season. In Carr and Lovejoy
(2000), the newsvendor also makes multiple deci-
sions, but their newsvendor chooses which customers
to serve (each with its own demand distribution)
given the newsvendor’s fixed capacity. In Dana and
Petruzzi (2001), the newsvendor’s demand depends
on the procurement quantity: More inventory leads to
a better fill rate, which increases demand. Hence, their
model, like ours, has an interdependence between
input parameters (the forecasted demand distribu-
tion) and the action (quantity). They show that a
unique equilibrium exists if that interdependence is
ignored and the procurement quantity in equilib-
rium is lower than optimal. In contrast, for several of
our salvage-value estimation methods, the firm pro-
cures too much in equilibrium, and for one of our
methods the firms procures the correct amount. In
addition, they consider a newsvendor that sets the
regular-season price, and they do not evaluate when
the equilibrium leads to a significant loss in profit.
The following papers provide other extensions to the
newsvendor model that are not closely related to this
work: Eeckhoudt et al.(1995), Lippman and McCardle
(1995), Schweitzer and Cachon (2000), Van Mieghem
and Rudi (2002).
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Hertz and Schaffir (1960) recognize that the salvage
value of clearance inventory depends on the amount
of inventory, but then argue that a constant salvage
value is an adequate approximation. They do not pro-
vide a method for estimating that salvage value.
There are several papers that study a two-period

version of the newsvendor model with fixed salvage
values: Donohue (2000), Fisher and Raman (1996),
Fisher et al. (2001), Kouvelis and Gutierrez (1997),
and Petruzzi and Dada (2001). In each case, the sec-
ond period allows a second replenishment, which we
do not have. In each case except Petruzzi and Dada
(2001), prices are exogenous. Our model is a spe-
cial case of Petruzzi and Dada (2001). However, their
focus is on a solution procedure for their more com-
plex model whereas our focus is on the robustness of
the traditional newsvendor model.
There are numerous papers that study revenue man-

agement, or markdown pricing, or both: e.g., Bitran
and Mondschein (1997), Bitran et al. (1997), Brumelle
et al. (1990), Federgruen and Heching (1999), Feng
and Gallego (1995), Gallego and Van Ryzin (1994),
Monahan et al. (2004), and Smith and Achabal (1998).
With the exception of Brumelle et al. (1990), these
papers assume that demand is independent across
time, whereas we allow for correlation in demand.
Furthermore, their focus is on optimization of a given
model without concern for how the model’s inputs
are determined or whether a simple model can pro-
vide an optimal solution.
There are a number of papers that study the robust-

ness of heuristics with inventory models. Dobson
(1988) studies the consequence of using incorrect cost
parameters due to estimation errors in the classic eco-
nomic order quantity (EOQ) model. Lovejoy (1990)
shows that myopic optimal policies can be optimal
or near-optimal in some dynamic inventory models
with parameter adaptive demand processes. Bounds
for the r
Q� inventory policy when a simplifying
heuristic is used to choose the order quantity, Q,
are provided by Zheng (1992) and later extended
by Axsater (1996), Gallego (1998), and Agrawal and
Seshadri (2000b). None of the mentioned papers con-
siders the interaction between actions and data used
to estimate input values.
In addition to Dana and Petruzzi (2001), there are

four other papers that discuss the consequence of

ignoring the interdependence between inputs and
actions, albeit in very different settings from ours:
Armony and Plambeck (2005) consider demand fore-
casting in a supply chain in which customers may
submit duplicate orders, and Cachon et al. (2005)
study assortment planning with consumer search.
Balakrishnan et al. (2004) find that iteratively apply-
ing the standard EOQ model in a setting where
demand depends on the inventory level converges to
an equilibrium, which is suboptimal. Cooper et al.
(2006) study a similar issue in the context of revenue
management. In setting a protection level for the high-
fare demand class, the demands for high and low
fares must be estimated from data, and those data
are influenced by the protection level chosen. They
find that the iterative application of the Littlewood
rule (which is analogous to the newsvendor problem),
combined with an estimation procedure, converges to
a point in which the protection level is too low even
though it is optimal according to the Littlewood rule
and the demand forecasts, given the protection level.
They study the behavior of a sequence of controls
and estimates, while we study the equilibrium behav-
ior and establish the existence and uniqueness of the
equilibrium.
In econometrics, a common challenge is the esti-

mation of a parameter that depends on the decisions
made by a firm when the firm is known to pos-
sess some knowledge that is relevant to its decision
that is not available to the econometrician. There are
numerous techniques for handling this endogeneity
issue. (Examples include Berry et al. 1995 and Nevo
2001. See Chintagunta et al. 2006 for a review.) In
our model, the decision maker has all of the infor-
mation needed to make a decision, so our challenge
is different from the standard endogeneity challenge
in econometrics. Finally, the interplay between esti-
mation and controls is a constant theme in stochas-
tic optimal control: estimation modules that produce
a unique and consistent input for each realization of
the random factor are considered and their existence
is assumed. See, for example, Bertsekas (2000). In
contrast to the newsvendor model in this paper, the
optimal control models are the best representation
of reality, and what needs to be estimated (the cur-
rent state) is well defined. Another difference is that
we seek the consistency of inputs and actions at the
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expectation level rather than for every realization of
the random factor.

3. Optimal Procurement and
Clearance Pricing

In this section, we evaluate the optimal decision in the
traditional newsvendor model and then the clearance-
pricing model. We conclude with a brief explanation
for why the clearance-pricing model is more complex
(i.e., not equivalent) than the newsvendor model with
a nonlinear salvage-value function.
Expected profit in the newsvendor model is

�q�=−cq+ r1q�+ r2q�

where riq� is expected revenue in period i. Period 1
expected revenue is r1q� = p1q − Iq�� and Period 2
expected revenue is assumed to be r2q� = vIq�,
where v is the fixed salvage value per unit and Iq�
is expected leftover inventory. Leftover inventory for
a given demand realization is Iq
 �� = q − ��+, and
expected leftover inventory is given by

Iq�=
∫ �

0
Iq
 ��dF ��=

∫ q

0
F ��d��

The newsvendor model chooses q to maximize �q�,

q = F −1
(
p1− c
p1− v

)

 (1)

where F −1·� is the inverse distribution function. From
the above, we can derive the function vnq�, which is
the salvage value such that q is the optimal quantity
with the newsvendor model:

vnq�= p1−
p1− c
F q�

� (2)

Let qo be the true optimal order quantity (of the
clearance-pricing model). The newsvendor model rec-
ommends qo as long as vnqo� is the inputted salvage
value. In other words, there is nothing that pre-
vents the newsvendor model from finding the opti-
mal quantity. All that we need for that to happen is
a method for consistently finding the correct salvage
value, vnqo�, to input to the model.
In the clearance-pricing model, there are two deci-

sions: the initial order quantity, and a clearance-price
function that depends on the amount of inventory

at the start of the clearance period. We derive the
optimal policy in three stages: First, we establish
that clearance-period revenue is concave in the order
quantity. Next, we show there exist three threshold
functions that partition the regular season demand
space into four intervals. The clearance-period rev-
enue function depends on the interval in which
the regular season demand realization falls. Finally,
we demonstrate that the expected profit function is
concave.
The Period 2 price, p2, is chosen to maximize rev-

enue after observing Period 1 demand, �, and the
remaining inventory Iq
 ��. Due to the existence of
the inverse function, p2s2
 ��, the equivalent decision
is to choose the number of units to sell, s2, to maxi-
mize revenue. Let 
R2s2
 ��= s2p2s2
 �� be the uncon-
strained revenue function, which is concave (by our
earlier assumption). Let ŝ2�� be the unconstrained
optimal Period 2 sales quantity:

ŝ2��= argmax
s2


R2s2
 ���

The firm can sell s2 units only if s2 ≤ Iq
 ��. When
� > q, there is no inventory left in the clearance
period and there is no clearance-period pricing deci-
sion. Let �R2q
 ��, defined over 	0
��× 	0
 q!
 be the
firm’s maximum revenue constrained by available
inventory:

�R2q
 ��=max
s2
 
R2s2
 ��" s2 ≤ Iq
 ����

From the Maximum Theorem Under Convexity,
�R2q
 �� is concave in q for fixed � because 
R2s2
 �� is
concave in s2.
The remaining constraint to consider is p2 ≤ p1. Let

R2q
 �� be the firm’s maximum Period 2 revenue,
given both the p2 ≤ p1 and the s2 ≤ Iq
 �� constraints
(and recall that p̂2�� < p1 for all ��:

R2q
 ��=min#p1Iq
 ��
 �R2Iq
 ��
 ��$ for � ≤ q�

The minimum of two concave functions is concave,
so R2q
 �� is also concave in q for fixed �.
We now turn to the evaluation of R2q
 ��. There

are four relevant cases for the second-period revenue
maximization problem based on the realization of
Period 1 demand. In the first case, Period 2 inventory
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is larger than the unconstrained optimal selling quan-
tity, Iq
 ��≥ ŝ2��. In this case, it is optimal in Period 2
to sell ŝ2�� and dispose of the remaining inventory
at the end of the clearance period. Define �̂q� ∈ 	0
 q!
such that �̂q�= 0 if Iq
0� < ŝ20�; otherwise, �̂q� is
the set of � that satisfy Iq
 �� = ŝ2��, which can be
written as

q− �−D2p̂2��
 ��= 0� (3)

By assumption, � +D2p̂2��
 �� is increasing in �, so
(3) demonstrates �̂q� is unique.
In the second case, there is less inventory than

needed to maximize the revenue in the clearance
period, Iq
 �� < ŝ2��, so it is optimal to sell all of
the remaining inventory. To do so, the firm sets the
Period 2 price to the clearance price, p2Iq
 ��
 �� as
long as the clearance price does not violate the p2 ≤ p1
constraint. Define �̃q� ∈ 	0
 q! such that �̃q� = 0 if
Iq
0� < D2p1
0�; otherwise, �̃q� is the set of � that
satisfies Iq
 ��=D2p1
 ��, which can be written as

q− �−D2p1
 ��= 0� (4)

By assumption, �−D2p1
 �� is increasing in �, so (4)
demonstrates that �̃q� > 0 is unique. Furthermore, if
�̂q� > 0, then a comparison of (3) with (4) reveals
�̃q� > �̂q� because D2p1
 �� <D2p̂2��
 ��.
The third case has � > �̃q�: the optimal clearance

period price is greater than p1, but due to the p2 ≤ p1
constraint, the firm must settle for p2 = p1.
The fourth case has q < � and R2q
 �� = 0� Given

that we have established q ≥ �̃q�≥ �̂q� for any q, the
second-period revenue is

R2q
 ��=




ŝ2��p2ŝ2��
 �� 0≤ � ≤ �̂q�

Iq
 ��p2Iq
 ��
 �� �̂q� < � ≤ �̃q�

Iq
 ��p1 �̃q� < � ≤ q

0 q < ��

(5)

Let Riq� be the expected revenue in period i. We
have

R2q� =
∫ �̂q�

0
ŝ2��p̂2�� dF ��

+
∫ �̃q�

�̂q�
p2Iq
 ��
 ��Iq
 ��dF ��

+
∫ q

�̃q�
p1Iq
 ��dF ���

Note that we use upper- and lower-case notation
to represent analogous functions in the two models.
While r1q� = R1q�
 i.e., newsvendor and clearance-
pricing models agree in their evaluation of Period 1
revenue, the models may disagree in their evaluation
of Period 2 revenue, i.e., r2q� �=R2q� is possible.
The firm’s expected profit, %q�, equals the first-

period profit plus the revenue from the second period:

%q�=−cq+R1q�+R2q��

The next step is to identify the optimal quantity.

Theorem 1. The optimal procurement quantity qo is
the unique solution to the following:

0 = p1−c�−p1F q�+
(∫ �̃q�

�̂q�

�

�q
Iq
��p2Iq
��
���dF ��

+
∫ q

�̃q�
p1dF ��

)
� (6)

Proof. Differentiating %q� yields the right-hand
side of (6). Notice that R2q
 �� is a continuous
function. Evaluating the second derivatives of %q�
requires the evaluation of �R2q
 ��/�q at the limits of
the integrals (i.e., the break points in its definition).
Because it is not necessarily differentiable at those
points, �R2q
 ��/�q at the lower limit of an integral is
the right derivative, and that at the upper limit is the
left derivative. The second derivative is

�2%q�

�q2
= −p1f q�+

∫ �̃q�

�̂q�

�2R2q
 ��

�q2
dF ��

− �̂ ′q��R2q
 ��
�q

∣∣∣∣
�=�̂q�

+�̃ ′q��R2q
 ��
�q

∣∣∣∣
�=�̃q�

− �̃ ′q�p1f �̃q��+ p1f q�� (7)

Terms 1 and 6 cancel each other out. Term 2 is
negative, because R2q
 �� is concave in q for all
� ∈ 	�̂q�
 �̃q�!. Term 4 is also negative, because
�R2q
 ��/�q ≥ 0 for any �. The sum of Terms 4 and 5
is negative, because �R2q
 ��/�q ≤ p1 for all q and �.
Hence, %q� is strictly concave in q. �

It is natural to wonder whether the optimal quan-
tity for the clearance-pricing model can be obtained
by using the newsvendor model with a nonlinear
salvage-value function. (Porteus 1990 provides the



Cachon and Kök: Implementation of the Newsvendor Model with Clearance Pricing
282 Manufacturing & Service Operations Management 9(3), pp. 276–290, © 2007 INFORMS

optimal quantity with the latter.) For example, sup-
pose the second-period revenue is

r2q�=
∫ q

0
Iq
 ��vIq
 ��� dF ��


where the salvage value, v·�, is a decreasing func-
tion of remaining inventory. Marginal second-period
revenue with respect to the order quantity is then∫ q

0

�

�q
Iq
 ��vIq
 ���� dF ��� (8)

A nonlinear salvage-value function could be con-
structed so that (8) matches the right-hand side of (6)
only if p2Iq
 ��
 �� = vIq
 ��� for all �, and that
is possible only if the second-period price is inde-
pendent of �, i.e., only if there is no correlation in
demand. The nonlinear salvage-value model assumes
that the salvage revenue depends only on the number
of units left over and is independent of how the firm
arrived at that number of units. That is a restrictive
assumption: For example, the revenue from having 99
units left over must be independent of whether the
firm started with 100 units (i.e., first-period demand
was one unit) or 10,100 units (first-period demand
was 10,001 units). Thus, the newsvendor model with
a nonlinear salvage-value function is equivalent to the
clearance-pricing model only when demand is inde-
pendent across time.

4. Salvage-Value Estimation
This section defines and analyzes four methods for
estimating the salvage value, v, to be used in the
newsvendor model. The first three salvage-value
heuristics are intuitively reasonable, but they do not
lead the newsvendor model to the optimal quantity.
We are interested in the bias they produce (whether
they tend to over- or underorder relative to the opti-
mal quantity). In the next section we explore numer-
ically the profit loss associated with each of these
methods. The fourth method leads to the correct sal-
vage value (i.e., the salvage value that causes the
newsvendor model to output the optimal order quan-
tity), but we illustrate why it is difficult to esti-
mate this salvage value using typically available data.
We start with the following definitions to formalize
the interaction between the estimation rules and the
application of the newsvendor model.

A salvage-value estimator yields an estimate of the
salvage value from a set of historical data. The
expected salvage value vq� is the expected estimate of
the salvage value for a given salvage-value estimator
and order quantity. A salvage-value heuristic is the use
of the newsvendor model with a salvage-value esti-
mator. A heuristic equilibrium is a pair, #v∗
 q∗$, such
that q∗ is the traditional newsvendor model’s optimal
order quantity given an inputted salvage value v∗,
and v∗ is expected salvage value given an order quan-
tity q∗" v∗ = vq∗�= vnq∗�. (Given that vnq� is increas-
ing, it is sufficient to define an equilibrium merely by
the salvage value, v∗, or the order quantity, q∗, but we
choose to define an equilibrium as a pair to emphasize
the connection between the model’s input, v∗, and its
recommended action, q∗.)

4.1. Average Salvage-Value Heuristic
The average salvage value is literally the average rev-
enue received per unit of inventory at the start of the
clearance period. For a single observation, the average
salvage value is

vaq
 ��=R2q
 ��/Iq
 ���
For a sample with n observations from similar items
for which q units were ordered and units were sal-
vaged, the average salvage-value estimator is


vaq�=
1
n

n∑
j=1

tj

yj

 (9)

where, for the jth observation, yj is the amount of
inventory at the start of the clearance period, and tj
is the total salvage revenue.
We can use the clearance-pricing model to evaluate

the expected average salvage value, vaq�, conditional
on having leftover inventory:

vaq� = E	vaq
��!

= 1
F q�

(∫ �̂q�

0

ŝ2��p̂2��

Iq
��
dF ��

+
∫ �̃q�

�̂q�
p2Iq
��
��dF ��+

∫ q

�̃q�
p1dF ��

)
�

(10)

The first integral includes outcomes in which only a
portion of the inventory is liquidated, the second inte-
gral includes outcomes in which all inventory is sold
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Figure 1 Average Salvage-Value Heuristic Equilibrium

qqa*

va(q)

p1

0

va*
vn(q)

c

at the clearing price, and the third integral includes
outcomes in which all inventory is sold at below the
clearing price.
Let #v∗a
 q

∗
a $ be a heuristic equilibrium when the firm

uses the average salvage-value heuristic: #v∗a
 q
∗
a $ is an

equilibrium if v∗a = vaq
∗
a �= vnq

∗
a �� We wish to deter-

mine whether an equilibrium exists and, if so, if it
is unique and, if so, how it performs, i.e., what the
relationship is between q∗a and q

o and between %q∗a �
and %qo�.
To provide some intuition, Figure 1 displays vnq�

and vaq� for one example. (The particular parameter
values are not important.) As can be seen in the fig-
ure, an equilibrium exists and it is unique, i.e., it is
the point at which the vnq� and vaq� functions inter-
sect. Given that vnq� is strictly increasing, existence
and uniqueness of #v∗a
 q

∗
a $ would be easy to demon-

strate if vaq� were strictly decreasing. One may think
vaq� should be decreasing (i.e., the expected salvage
value is decreasing in the number of units ordered),
but, as is clear from the figure, that is not necessarily
(or even generally) the case because vaq� involves a
conditional expectation: If q is quite small, but never-
theless inventory must be salvaged, then the demand
realization must have been terribly low.
The next theorem proves uniqueness of #v∗a
 q

∗
a $ by

demonstrating that v′nq� > v
′
aq� at any equilibrium.

(While it appears in the figure that vaq� − vnq� is
decreasing everywhere, which is a sufficient condition
for uniqueness, that is a more restrictive condition,
and it is not clear that it holds for all q.)

Theorem 2. With the average salvage-value heuristic,
there exists a unique heuristic equilibrium, #v∗
 q∗a $
 and

q∗a > qo, i.e., the newsvendor model with the average
salvage-value input procures too much.

Proof. Existence is demonstrated geometrically:
vnq� is a continuous and increasing function with
vn0� = −� and limq→� vnq� = c; vaq� is a contin-
uous and nonnegative function with limq→� vaq� =
0; therefore, there exists at least one q such that
vnq�= vaq�.
From the Poincaré-Hopf index theorem (Vives 1999),

there is at most one equilibrium if z′q� < 0 for all equi-
librium q, where zq�= vaq�−vnq�. Define the auxil-
iary functions, yaq�= vaq�F q� and ynq�= vnq�F q�.
Differentiate,

z′q�= y′aq�− y′nq��F q�− f q�yaq�− ynq��
F q�2

�

At an equilibrium yaq�= ynq�, so z′q� < 0 at an equi-
librium if

y′aq�− y′nq� < 0� (11)

We have y′nq�= p1f q�,

y′aq� = −
∫ �̂q�

0

ŝ2��p̂2��

Iq
 ��2
dF ��

+
∫ �̃q�

�̂q�

�p2Iq
 ��
 ��

�I
dF ��+ p1f q��

Therefore, the condition (11) can be written as

−
∫ �̂q�

0

ŝ2��p̂2��

Iq
 ��2
dF ��+

∫ �̃q�

�̂q�

�p2Iq
 ��
 ��

�I
dF �� < 0


which holds because �p2I
 ��/�I < 0. (Note, (11) does
not imply that z′q� < 0 for all q.)
Now demonstrate q∗a > qo. Differentiate the profit

function,

%′q�

=
(∫ �̃q�

�̂q�

(
p2Iq
��
��+Iq
��

�p2Iq
��
��

�I

)
dF ��

+
∫ q

�̃q�
p1dF ��

)
−ynq�

=yaq�−ynq�+
∫ �̃q�

�̂q�
I q
��

�p2Iq
��
��

�I
dF ��

−
∫ �̂q�

0

ŝ2��p̂2��

Iq
��
dF ���
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The sum of the latter two terms is negative if �̃q� > 0.
From (6) it must be that �̃qo� > 0. Therefore, %′qo�= 0
implies yaqo� − ynq

o� > 0, which implies zqo� > 0.
Because there is a unique q∗a such that zq

∗
a � = 0 and

z′q∗a � < 0
 it follows that q
o < q∗a . �

Consider an iterative process that chooses an order
quantity based on the current average salvage value,
observes a salvage value, updates the average sal-
vage value using the estimator, and so on. Although
Theorem 2 guarantees the existence of a unique equi-
librium, it does not ensure the convergence of the
iterative process to the equilibrium. However, in our
numerical experiments, the iterative process always
converges to the equilibrium regardless of the initial
salvage value.

4.2. Marginal Salvage-Value Heuristic
Given that the newsvendor model is based on a
marginal analysis, one might argue that the marginal
salvage value is more appropriate than the average
salvage value. To be specific, marginal salvage value
vmq
�� is the revenue received from the last unit
ordered, i.e., the qth unit, assuming the revenue from
that unit is collected in the clearance period.

vmq
��=
{
p2Iq
 ��
 ��
 if s2p2�≥ Iq
 ��
0
 otherwise�

}

From a sample of n observations as described in §4.1,
the marginal salvage-value estimator yields


vmq�=
1
n

n∑
j=1

tj

yj
1#zj = yj$
 (12)

where zj is the number of units sold in the clearance
period and 1#zj = yj$ is an indicator function equal to
one if zj = yj , and zero otherwise.
From the clearance-pricing model, the expected

marginal salvage value, vmq�, is

vmq� = E	vmq
��!

= 1
F q�

(∫ �̃q�

�̂q�
p2Iq
��
��dF ��+

∫ q

�̃q�
p1dF ��

)
�

(13)

A comparison of (10) with (13) reveals that vmq�=
vaq� when �̂q� = 0, i.e., it is expected that the
marginal salvage value is identical to the expected

average salvage value when it is always optimal to
sell all clearance-period inventory, as in the case of
constant elasticity demand. Hence, in that situation
the marginal salvage value is no different from the
average salvage value. However, with exponential
demand, �̂q� > 0 is possible (i.e., it may be optimal to
salvage only a portion of the clearance-period inven-
tory), in which case vmq� < vaq�. While Theorem 3
indicates that the marginal salvage heuristic yields
better results in those cases, it nevertheless still does
not yield the optimal profit.

Theorem 3. With the marginal salvage-value heuristic,
there exists a unique heuristic equilibrium, #v∗m
 q

∗
m$ and

qo < q∗m. If 
R2s2
 �� is increasing in s2 for all � (so that it is
always optimal to liquidate all clearance-period inventory),
then q∗m = q∗a , otherwise q∗m < q

∗
a .

Proof. This proof is analogous to Theorem 2, so it
is omitted for brevity. �

4.3. Weighted Average Salvage-Value Heuristic
Neither the average salvage value nor the marginal
salvage value is weighted to account for the number
of units that are salvaged, but the weighted average
salvage value is. To be specific, given a sample of
observations as described in §4.1, the weighted aver-
age salvage estimator is


vwq�=
n∑
j=1
tj

/ n∑
j=1
yj � (14)

The expected weighted average salvage value, vwq�,
expected clearance-period revenue divided by ex-
pected clearance-period inventory conditional that
there is inventory to liquidate in the clearance period:

vwq�=
1/F q��R2q�
1/F q��Iq�

= R2q�

Iq�
�

Because vwq� is the ratio of two expectations, while
vaq� is the expectation of the ratio, the average
salvage-value heuristic and the weighted average
salvage-value heuristic can yield significantly differ-
ent results. Given that the average salvage value is too
high, we expect the weighted average salvage value
to perform better: The lowest observed salvage values
tend to occur when inventory is highest.
Analogous to the existence proof for the average

salvage-value heuristic equilibrium, it can be shown
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that there exists a weighted average salvage-value
heuristic equilibrium, #v∗w
 q

∗
w$. Among the scenarios

considered in the numerical study discussed in the
next section, we did not find a scenario in which there
existed multiple equilibria with the weighted average
salvage value. Nevertheless, we are unable to prove
(or provide simple conditions for) uniqueness.
In all of the scenarios we report in the numerical

study, we find q∗w > q
o, but it is possible to construct

pathological examples in which q∗w < q
o.

4.4. Marginal Revenue Heuristic
The three salvage-value heuristics discussed so far are
simple and intuitive, but they do not generate the opti-
mal solution as a unique equilibrium. The marginal
revenue heuristic does. Let the input to the traditional
newsvendor model be the expected marginal revenue,
vrq�, where

vrq� =
1
F q�

∫ q

0

�R2q
��

�q
dF ��

= 1
F q�

(∫ �̃q�

�̂q�

(
p2Iq
��
��

+Iq
���p2Iq
��
��
�q

)
dF ��

+
∫ q

�̃q�
p1dF ��

)
� (15)

The next theorem demonstrates that the optimal solu-
tion is indeed a heuristic equilibrium with vrq�, but,
more importantly, the optimal solution is the unique
equilibrium.

Theorem 4. With the marginal revenue heuristic, the
unique heuristic equilibrium is #vr qo�
 qo$, i.e., vrqo� =
vnq

o�.

Proof. Existence and uniqueness proofs are anal-
ogous to Theorem 2 and omitted for brevity. Define
yrq�= vrq�F q� and ynq�= vnq�F q�. We have

yrq�− ynq�=
∫ q

0

�R2q
 ��

�q
dF ��− p1F q�+ p1− c��

The solution to yrq� − ynq� = 0 is the equilibrium
quantity with the marginal revenue method, de-
noted q∗r . yrq�−ynq� is identical to %′q� given in (6).
Hence, q∗r = qo. �

The marginal revenue is not really a salvage value,
i.e., it is not, in general, the per unit amount that can

be earned on left over inventory. Note that vrq� sim-
plifies to

vrq� = vmq�

+ 1
F q�

(∫ �̃q�

�̂q�
I q
��

�p2Iq
��
��

�q
dF ��

)
� (16)

The marginal revenue and marginal salvage-value
concepts coincide only when the second-period price
does not depend on the amount of leftover inventory.
However, if clearance-period revenue is concave in
the amount of leftover inventory, then marginal rev-
enue is less than the marginal salvage value (which
helps to explain why the marginal salvage-value
heuristic equilibrium quantity is greater than qo�. In
fact, it is possible that if the firm orders the true opti-
mal quantity, qo, then the marginal salvage value can
be greater than the purchase cost vmqo� > c (which
renders the newsvendor model infeasible). However,
at the optimal solution the marginal revenue is always
less than cost, vrqo� < c.
The evaluation of vrq� from the sample data de-

scribed in §4.1 is not straightforward. If there is no
correlation in demand across time, then a conserva-
tive estimate of the marginal revenue is


vrq�=
1
n

n−1∑
j=1

tj+1− tj
yj+1− yj

� (17)

This salvage-value estimator is a piecewise-linear
approximation of the concave-increasing salvage rev-
enue curve. It is conservative in the sense that it is
biased such that E	
vrq�! < vrq�, which is prudent,
given that the newsvendor model is more sensitive
to an overestimation of the salvage value than to an
underestimation. The following theorem shows that
the heuristic is asymptotically unbiased:

Theorem 5. E	
vrq�! < vrq� for finite n and E	
vrq�!
→ vrq� as n→�.

Proof. Given yj
 tj �nj=1, let -j = ��R2q
 ��/�q��=q−yj .
Note that -j are not observed, but if they were, the
unbiased estimator for vrq� would be 1/n�

∑n
j=1 -j .

Define u1 = t1/y1 and uj = tj − tj−1�/yj − yj−1� for
j > 1. Define lj = tj+1 − tj �/yj+1 − yj� for j < n and
ln = 0. Clearly, we have lj < -j < uj for all j and lj =
uj+1 for j = 1
 � � � 
n− 1. Therefore,

1
n

n−1∑
j=1
lj <

1
n

n∑
j=1
-j <

1
n

n∑
j=1
uj
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1
n

n−1∑
j=1
lj <

1
n

n∑
j=1
-j <

1
n

(n−1∑
j=1
lj +u1

)


vrq� <
1
n

n∑
j=1
-j < 
vrq�+ p1/n�

For any sample path, 
vrq� < 1/n�
∑n

j=1 -j . There-
fore, E	
vrq�! < E	1/n�

∑n
j=1 -j! = vrq�. As n → �,


vrq�→ 1/n�
∑n

j=1 -j and 1/n�
∑n

j=1 -j → vrq�, hence

vrq�→ vrq�. �

It is relatively simple to estimate marginal rev-
enue with independent demands, because then the
clearance-period revenue depends only on the num-
ber of units salvaged. With correlated demand, (17)
may yield unreasonable estimates: in particular, it
may result in a negative estimate for marginal rev-
enue even though vrq� is clearly never negative.
(Total revenue can decrease in the number of units to
be salvaged because a large number of leftover units
implies a low demand outcome, which then requires
a drastic price cut, thereby cutting total revenue even
though there are more units to salvage.)
It appears that estimating vrq� in the correlated

demand case is quite difficult, with data typically
available to a firm because vrq� is the incremental
amount of revenue if one additional unit is available
to salvage and if one additional unit was originally
ordered (so that the difference between them, which
is the regular-season sales, is held constant). In other
words, the firm needs to have an estimate for the
change in salvage revenue that would occur while
holding regular season demand constant. For every
observation of regular-season demand, however, there
is generally only one observation of salvage revenue.
A solution for the correlated demand case is to

make an assumption regarding the second-period
demand function. If second-period demand takes the
exponential form, D2p2
 �� = x���e−�p2 , then (16)
simplifies to

vrq�= vmq�−
F �̃q��− F �̂q��

�F q�

 (18)

and if second-period demand takes the isoelastic
form, D2p2
 ��= x���p−�2 , then (16) simplifies to

vrq�= vmq�−
1

�F q�

∫ �̃q�

0
p2Iq
 ��
 ��dF ��� (19)

Both (18) and (19) are easy to estimate assuming
that the elasticity parameter is known (or has been
estimated, which is not difficult given the assumed
demand form): (18) is equivalent to the evaluation
of the marginal salvage value with the one exception
that p2Iq
 ��
 ��− 1/� is taken as the salvage value
instead of just p2Iq
 ��
 �� when there is a mark-
down that does not clear all inventory, i.e., �̂q�≤ � ≤
�̃q�; and (19) is equivalent to the evaluation of the
marginal salvage value with the one exception that
p2Iq
 ��
 ��/� is taken as the salvage value instead of
just p2Iq
 ��
 �� when a markdown is made. The esti-
mator 
vrq� can be obtained in this case by using 
vmq�
as defined in Equation (12) and estimates of the addi-
tional terms in (18) and (19). Notice that this approach
does not require the estimation of the correlation
structure x��, whereas finding the optimal solution
to the clearance-pricing model does. Of course, if
the clearance-period demand model is fully known,
then it is not actually necessary to implement the
traditional newsvendor model by evaluating vrq�.
Instead, the clearance-period optimal solution, (6),
could be evaluated directly. In this case, the two mod-
els lead to the same order quantity.
To summarize the average, marginal, and weighted

average salvage-value heuristics lead to order quan-
tities greater than the optimal solution, and the
marginal revenue heuristic leads to the optimal solu-
tion. These results hold when clearance-period de-
mand is independent or correlated with initial period
demand. We provide an estimator for the marginal
revenue heuristic that works when clearance-period
demand is independent of initial period demand, and
we suggest an alternative method when demands are
correlated across the periods. The alternative method
for estimating marginal revenue requires the mod-
eler to assume a form of the clearance-period demand
function (e.g., isoelastic or exponential) and an esti-
mate of the elasticity of the demand function (but
does not require the modeler to know the correlation
between the two periods).

5. Numerical Study
This section reports on a numerical study to assess the
magnitude of the performance loss from using either
vaq�, vmq�, or vwq� as the salvage-value input to the



Cachon and Kök: Implementation of the Newsvendor Model with Clearance Pricing
Manufacturing & Service Operations Management 9(3), pp. 276–290, © 2007 INFORMS 287

newsvendor model. We generated 336 scenarios from
all combinations of the following parameters:

m= p− c�/p= #0�25
0�5$ d2p2�= #�e−�p2
�p−�2 $
0/1= #0�25
0�5
1�0$ �= #1�2
2�4$

x��= #�
1$ p− c
p− v∗a

= #0�55
0�60
 � � � 
0�85$


where m is the gross margin, 0 is the standard devia-
tion of regular-season demand, and 1 is the mean of
regular-season demand. We assume that D2p2
 �� =
x��d2p2�, so x�� = � means regular-season and
clearance-period demands are positively correlated,
whereas x�� = 1 means they are independent. The
second-period demand function is either exponen-
tial, �e−�p2 , or constant price elasticity, �p−�2 . Tellis
(1988) finds that the � parameter generally ranges
between one and three, with an average of two, so we
choose #1�2
2�4$ to represent low- and high-demand
elasticity.
In each scenario, we set p1 = 2, 1 = E	D1! = 1
000;

and the regular-season demand follows a gamma
distribution. In each scenario, the � parameter in
the second-period demand function is chosen such
that the average salvage-value heuristic equilibrium,
#v∗a
 q

∗
a $, yields the desired critical ratio. Hence, these

scenarios could plausibly be observed if a firm were
to use the average salvage value.
Table 1 presents summary data on the profit perfor-

mance of the three nonoptimal salvage value heuris-
tics. The average salvage value performs the worst,
followed by the marginal salvage value, and the

Table 1 Profit Loss, �1−��q∗�/��qo��

Salvage-value Average Standard Median Minimum Maximum
heuristic �/� (%) deviation (%) (%) (%) (%)

Average 0	25 4	0 3	4 3	0 0	0 14	3
0	50 9	3 7	8 7	4 0	1 31	6
1	00 24	1 17	7 21	2 0	3 63	3
All 12	5 14	2 6	8 0	0 63	3

Marginal 0	25 3	2 3	2 2	2 0	0 14	3
0	50 7	6 7	4 5	6 0	0 31	6
1	00 19	8 17	4 16	1 0	0 63	3
All 10	2 13	1 5	1 0	0 63	3

Weighted 0	25 0	5 0	6 0	3 0	0 3	5
average 0	50 1	4 2	0 0	6 0	0 11	1

1	00 5	1 7	7 0	8 0	0 35	0
All 2	3 5	0 0	5 0	0 35	0

Table 2 Over Order %, �q∗/qo − 1�

Salvage-value Average Standard Median Minimum Maximum
heuristic �/� (%) deviation (%) (%) (%) (%)

Average 0.25 11	4 5	1 11	9 1.4 21.4
0.50 23	2 10	2 24	7 2.7 43.2
1.00 48	7 20	5 53	3 6.0 86.6
All 27	8 20	6 20	8 1.4 86.6

Marginal 0.25 9	9 5	4 10	0 0.5 21.4
0.50 20	0 10	9 20	6 1.0 43.2
1.00 42	0 22	0 44	1 2.1 86.6
All 24	0 19	7 17	6 0.5 86.6

Weighted 0.25 3	7 2	3 3	4 0.3 10.2
average 0.50 7	8 5	4 6	7 0.4 22.9

1.00 17	1 14	7 10	4 0.5 49.3
All 9	6 10	7 5	5 0.3 49.3

weighted average salvage value performs well on
average, but its maximum profit loss can be substan-
tial (35%). Table 2 indicates that all three methods
order more than the optimal quantity, often by a con-
siderable amount. Table 2 and Figure 2 reveal that
the performance of all three methods deteriorates as
the variability or critical ratio increases and as the
gross margin decreases. For example, with a gross
margin of 25% and a critical ratio of 75% (which are
similar to the parameters faced by Sport Obermeyer,
as reported by Fisher and Raman 1996), the aver-
age salvage-value’s profit is 22% lower, on aver-
age, than the optimal profit. Table 3 reveals that the
weighted salvage value performs quite well when-

Figure 2 Average Performance of the Newsvendor Heuristics
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Table 3 Profit Loss, 1−��q∗�/��qo�

Weighted average salvage value

Average Standard Median Maximum
�/� x��� d2�p2� (%) deviation (%) (%) (%)

0.25 � e−�p 0	29 0.31 0.20 1	35
p−� 0	29 0.35 0.16 1	45

� e−�p 0	67 0.71 0.43 3	02
p−� 0	71 0.85 0.41 3	51

0.50 � e−�p 0	45 0.49 0.31 2	09
p−� 0	45 0.53 0.24 2	18

� e−�p 2	27 2.25 1.64 9	27
p−� 2	44 2.78 1.52 11	11

1.00 � e−�p 0	44 0.49 0.24 1	94
p−� 0	42 0.50 0.23 1	98

� e−�p 9	35 7.55 7.35 28	81
p−� 10	29 9.72 7.74 35	01

ever the clearance-period demand is positively cor-
related with regular-season demand, x�� = �, but
can perform poorly when clearance-period demand is
independent of regular-season demand, x��=1, and
there is significant demand uncertainty. Thus, while
the weighted average salvage value is not optimal, it
can be remarkably effective. In particular, it is effec-
tive in the most relevant condition for a fashion item:
demand is positively correlated across seasons. If it is
believed that demand is independent across the peri-
ods, then the marginal revenue estimator (17) could
be applied. We conclude that the method by which
the salvage value is estimated does have a significant
impact on expected profits.
Because we have established analytically that the

average salvage value is too high, we are curious to
determine how frequently the average salvage value
is greater than purchase cost when the optimal quan-
tity is ordered. In those situations, the traditional
newsvendor model recommends ordering an unlim-
ited quantity, which suggests that the chosen order
quantity is too low. Table 4 reveals that this precar-
ious situation for the newsvendor model is actually
quite common, with a low gross margin (25%) and
high critical ratios (70% or higher).

6. Discussion
Our main finding is that the traditional newsvendor
model should not be implemented in practice with-
out careful consideration of the estimation of one of

Table 4 Percentage of Scenarios in Which the
Average Salvage Value at the Optimal
Order Quantity Is Greater Than Cost

Gross margin (%)

Critical ratio 25% 50%

0.55 0 0
0.60 8 0
0.65 13 0
0.70 29 0
0.75 54 0
0.80 79 13
0.85 100 50

Average 40 9

its inputs, the salvage value. If the clearance price is
independent of the amount of leftover inventory, then
the marginal salvage value method is appropriate. For
example, if a bakery has a policy of selling day-old
products for 50% off no matter the amount of prod-
uct left over, then the marginal salvage value (the
expected revenue on the last unit in the clearance
period) leads to the optimal solution. However, if the
clearance price depends on the amount of inventory
remaining at the end of the regular season (because
the firm is following a responsive clearance-pricing
strategy), then the marginal salvage value (or worse,
the average salvage value) can lead to an order quan-
tity that is significantly greater than optimal, and to
a substantial profit loss. Furthermore, there may be
no indication that a grossly suboptimal decision is
made: the chosen order quantity may be optimal for
the inputted salvage value, which is then observed
in expectation given the order quantity. Interestingly,
given an optimal order quantity, we find that the
average salvage value of leftover inventory may actu-
ally be larger than marginal cost, in which case a
naive manager may conclude, based on the traditional
newsvendor model, that the order quantity is too low.
This paper is best viewed in terms of work on

the robustness of heuristics in other classic inven-
tory models (e.g., Dobson 1988, Gallego 1998, Zheng
1992): The newsvendor model is a simplified version
of the clearance-pricing model, and the question is
whether this simplification deteriorates performance.
However, in those other papers the issue of input-
action dependence does not exist.
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One might argue that our results are not necessary
if a manager either is willing to use the newsven-
dor model with a nonlinear salvage-value function or
is willing to use the more-complex clearance-pricing
model. We have shown that the newsvendor model
with a nonlinear salvage value function cannot repli-
cate the clearance-pricing model when demand is
correlated across seasons. Therefore, the nonlinear
salvage-value model is not a viable approach.
To implement the clearance-pricing model, it is

necessary to estimate the clearance period demand
model: estimate the correlation structure, choose the
form of the demand function (exponential, isoelastic,
or something else), and then determine their parame-
ters. Conditional that this estimation is done correctly,
the clearance-pricing model yields an optimal order
quantity. Implementation of the traditional newsven-
dor model requires fewer assumptions regarding the
structure of the clearance-period demand, but does
not lead to an optimal solution. Nevertheless, in the
important case of correlated demand, the weighted
average salvage value appears to generate results
that are near optimal. Alternatively, the newsvendor
model used with an adjusted marginal salvage value
leads to the optimal solution if demand elasticity is
known. Thus, we are somewhat agnostic with respect
to which model a manager should use in practice.
Instead, we focus on the potential pitfalls of using the
traditional newsvendor model with an inappropriate
method for estimating its salvage-value input.
To conclude, we emphasize that a model is not

helpful to practitioners if it exists in a vacuum: while
in some settings we are forced to make assumptions
about the inputs to our models, practicing managers
must actually use data to estimate inputs. In our
opinion, the concept of input-action dependence and
heuristic equilibrium is not a mere intellectual curios-
ity, but rather is a key construct for understanding the
performance of a model. We have demonstrated this
in the important newsvendor model.
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