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Most supply chains are composed of independent agents with individual pref-
erences. These agents could be distinct firms or they could even be managers
within a single firm. In either case, it is expected that no single agent has con-
trol over the entire supply chain, and hence no agent has the power to optimize
the supply chain. It is also reasonable to assume that each agent will attempt
to optimize his own preference, knowing that all of the other agents will do the
same. Will this competitive behavior lead the agents to choose policies that
optimize overall supply chain performance? The answer is usually “no”, due
to supply chain externalities. An externality occurs whenever the action of one
agent impacts another agent. For example, suppose agent i’s action benefits
agent 7. Agent ¢ will tend to do too little of that action because he does not
consider the full benefit of the action on the supply chain (assuming increasing
that action is costly to agent ¢). Similarly, suppose agent i’s action confers
an additional cost on agent j. In this case agent ¢ will tend to do too much
of that action. As will be discussed, many externalities exist in supply chain
operations.

When competition degrades supply chain performance the agents can benefit
from coordination. But how should they coordinate? They could each agree to
work towards the general welfare of the supply chain, but this agreement still
leaves each agent with an incentive to serve his own preference. The typical
solution is for the agents to agree to a set of transfer payments that modifies
their incentives, and hence modifies their behavior. Many types of transfer
payments are possible.



This chapter reviews competitive supply chain inventory management. The
topic is broadly interpreted, so important research from economics and mar-
keting is included in addition to recent operations management research. §1.1
begins with a model of a supplier that sells a product to a retailer that faces
a downward sloping demand curve. In this setting Spengler (1950) obtains
the classic double marginalization result: the retailer does not consider the
supplier’s profit margin when choosing his order quantity, so the retailer or-
ders too little product. Techniques are discussed to encourage the retailer
to choose the correct order quantity. §1.2 details a similar model, except the
retailer faces stochastic demand at a fixed retail price. Again, the retailer pur-
chases too little inventory because he does not consider the supplier’s profit
margin. Pasternack (1985) demonstrates that the optimal supply chain profit
can be achieved when the supplier offers the retailer a buy-back contract (the
supplier purchases unsold goods at a specified buy-back price). §1.3 discusses
the use of quantity discounts to raise order quantities. There is a well developed
literature on quantity discounts, so this section concentrates on describing the
externalities that create the need for quantity discounts.

The primary model in this chapter is discussed in §1.4. This is a two echelon
supply chain with a single supplier and a single retailer that faces stochastic
demand. The firms incur holding and backorder costs. There are positive
lead times between stages and the firms implement bases stock policies. Three
externalities are identified in this setting. It is shown that there is a unique
Nash equilibrium pair of base stock policies, i.e. there is only one pair of base
stock policies such that no firm has a unilateral incentive to deviate. The
Nash equilibrium is presumed to be the competitive solution. The optimal
policies are never a Nash equilibrium, hence competition always deteriorates
supply chain performance. A numerical study indicates that there is substantial
variance in the magnitude of the competition penalty: In some cases it is modest
(less than 5%), but in other cases it is enormous (over 100%).

Four coordination techniques are applied to this model in §1.5 . Cachon
and Zipkin (1997) propose linear transfer payments based on actual inventory
and backorder levels. Chen (1997) suggests linear transfer payments based on
a special accounting of the inventory and backorder levels. Lee and Whang
(1996) detail a non-linear transfer payment scheme that is related to Clark
and Scar{’s (1960) decomposition technique. Porteus (1997) suggests related
transfer payments, but implements these payments with responsibility tokens.

Additional operations management research on competitive supply chain
inventory management is discussed in §1.6. This section highlights research
that identifies additional supply chain inventory management externalities and
potential coordination solutions. The final section concludes.

1.1 DOUBLE MARGINALIZATION

Double marginalization is present in most supply chain model because it occurs
whenever the supply chain’s profits are divided among two or more players and
at least one of the players influences demand. To explain in greater detail,
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consider a supply chain with a supplier and a retailer that sells a product in
one period. The retailer can sell ¢ > 0 units at price p(q) > 0. There exists
a maximum possible sales quantity @, i.e. p(¢) = 0. Over the interval [0,q]
assume that p(q) is decreasing, continuous, twice differentiable and concave,
ie. p'(¢) < 0 and p”(¢) < 0. The supplier produces each unit for a cost
¢ < p(0), and sells each unit to the retailer for a wholesale price w.

The supplier first announces her wholesale price w and then the retailer
chooses an order quantity q. The supplier produces and delivers this order to
the retailer. Finally, the retailer sells the ¢ units at price p(q).

To analyze this game, begin with the centralized solulion, which assumes a
single agent controls the entire supply chain to maximize supply chain prof-
its. Next, evaluate the decentralized solulion which assumes the players make
choices with the objective of maximizing their own profits. If the decentralized
and centralized solutions differ, investigate how to modify the player’s payoffs
so that the new decentralized solution corresponds to the centralized solution.
This three step analysis pattern is commonplace in the research described in
this chapter.

The centrally controlled supply chain’s profits are

(q) = q(p(q) — ),

which only depends on the retailer’s sales quantity. (The supplier’s wholesale
price decision merely creates a transfer payment between the two firms, so it
does not influence supply chain profits.) Since profits are strictly concave in
quantity over the interval [0, G], the optimal quantity ¢° satisfies II'(¢*) = 0,

p(¢°) —c+4°p'(¢°) = 0. (1.1)

(The interval boundaries are never optimal.)
Now assume the retailer must choose a quantity after observing the supplier’s
wholesale price. The retailer’s profits are

7 (q) = q(p(q) — w).

Since the retailer’s profits are strictly concave, his optimal quantity ¢* satisfies
. ((]*) =0,
* % 1f %
pla") —w+q"p'(¢") = 0.
The supplier will always choose w > ¢ (otherwise she earns no profit), so it
follows from (1.1) that

p(¢°) —w+¢°p'(¢°) < 0.

Hence, ¢° > ¢*. In words, the retailer orders less than the supply chain optimal
quantity whenever the supplier earns a positive profits. Spengler (1950) called
this problem double marginalization because each firm only considers its own
profit margin in making its decision, and does not consider the supply chain’s
profit margin.



Note that ¢* = ¢° only when the supplier prices at marginal cost, w = c.
Hence, marginal cost pricing is one solution to double marginalization. Of
course, this is not a very good solution for the supplier, since w = ¢ implies
she earns a zero profit. In eflect, the supplier sells to the retailer her portion of
the supply chain for free. A two-part tariff is a better strategy for the supplier.
In particular, the supplier could choose to price at marginal cost w = ¢ (part
one of the tariff) and also charge a fixed fee 11(¢°) (part two of the tariff). The
retailer will choose ¢° to maximize his gross profits 1I(¢°), but of course the
fixed fee eliminates those profits. Hence, total supply chain profits are optimal
and awared exclusively to the supplier. While marginal cost pricing combined
with a fixed fee is a plum strategy for the supplier in this model, Saggi and
Vettas (1998) demonstrate that marginal cost pricing is not an effective strategy
for the supplier when there are multiple competing retailers.

Without the use of fixed payments, Jeuland and Shugan (1983) suggest the
firms coordinate with a profit sharing contract. This contract specifies that the
supplier earns fII(q), for 0 < f < 1, and the retailer earns (1 — f)II(¢q). The
wholesale price is now irrelevant to each firm’s profits, so the retailer chooses ¢°
to maximize his profits, and hence the supply chain earns the optimal profits.

1.2 BUY-BACK CONTRACTS

A buy-back contract specifies a price b at which the supplier will purchase
unsold goods from a retailer. These contracts are common in many industries,
e.g. publishing and personal computers (see Padmanabhan and Png, 1995).

To understand why a supplier might want to offer a buy-back contract,
consider a supply chain with a single supplier and a single retailer. The retailer
charges a fixed retail price p > 0 and faces stochastic demand. Let ®(z)
be the cumulative distribution function of demand and let ¢(z) be the density
function. Assume ®(x) is continuous and differentiable. The sequence of events
follows: (1) the supplier announces a wholesale price w and a buy-back price b;
(2) the retailer chooses an order quantity ¢; (3) the supplier produces ¢ units
at marginal cost ¢ and delivers these units to the retailer (¢ < p); (4) demand
is realized and unsold goods are returned to the supplier. Assume the supplier
earns nothing from the disposal of the returned units. Pasternack (1985) studies
a generalized version of this model.

A central planner chooses only a production quantity to ship to the retailer,
since both the wholesale price and the buy-back rate are mere transfer pay-
ments. The supply chain’s profits are

1) = —eq-+p (1= 0@+ [ wo(w)as]

The first term is the production cost and the second term is the expected sales
revenue. This is a newsvendor problem, and it is well known that the optimal
order quantity ¢° satisfies

o(q7) ==L, (1:2)
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The retailer’s profits are

7o(g) = —wg +p [(1 ~ oo+ [ w(x)dx} w0 [ - a)otayis

The first term is the purchase costs, the second term is expected sales revenue
and the third term is expected revenue from returns. Assuming p > w > b (the
retailers earns a profit on each unit sold and a loss on each unit returned), the
retailer’s profits are strictly concave and the optimal order quantity ¢* satisfies

B(q') = —. (1.3)

When there is no buy-back, i.e. w > ¢ and b = 0, comparison of (1.2) and
(1.3) reveals that ¢* < ¢°. In words, if the supplier prices above marginal
cost and doesn’t offer to purchase unsold goods, double marginalization causes
the retailer to order less than the supply chain’s optimal quantity. Since sup-
ply chain profits depend on ¢, the sum of the firms’ profits will be less than
maximum supply chain profits.

The supply chain could achieve its best performance if the supplier were
willing to price at marginal cost, but as already mentioned, this is not an
attractive solution to the supplier. Instead of lowering her wholesale price to
marginal cost, (1.3) indicates that increasing b will raise the retailer’s order
quantity. In fact, the retailer chooses ¢° whenever

pmw_P-° (1.4)

o~

Let b(w) be the buy-back that satisfies (1.4),

)< () - 2t

p—cC

o~

So supply chain profits are maximized even if w > ¢ as long as b = b(w). Note
that Z(w) is independent of the demand distribution, so it could apply across
multiple retailers facing heterogenous demand distributions.

The supplier’s main concern is with her own profits, 7;(w, b, ¢), and not with
the supply chain’s profits,

s (w, b, q) = q(w — ¢) — b/oq zo(x)dz.

The first term is the supplier’s sales revenue and the second term is the expected
cost of purchasing unsold goods. Assuming the supplier chooses b = b(w), the
retailer will choose ¢°, so the supplier’s profits are

o

s (w,g(w),qa) = ¢°(w — ¢) — b(w) /Oq zo(x)dz.
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Differentiate with respect to w

ow q_p—c

o, (wﬁ(w)’qO) oL / qoxsb(w)dx
0

o

1 q
= W/O (I)(.’Ii)d.’l?'

(The last step is done with integration by parts.) So the supplier’s profits are
increasing in her wholesale price. In fact, the supplier earns essentially all of
the supply chain’s profits when w = p — ¢, for ¢ &~ 0. (The retailer’s margin
approaches zero, but the buy-back rate approaches w, thereby ensuring that
the retailer still orders ¢°.)

1.2.1 Related models

Several important extensions to Pasternack’s model have been considered. Kan-
del (1996) incorporates asymmetric information, service and quality issues. Em-
mons and Gilbert (1998) relax the assumption of a fixed retail price. Lariviere
(1998) provides a more detailed analysis of price-only and buy-back contracts.
For instance, he investigates the supplier’s optimal wholesale price in a price-
only contract.

Padmanabhan and Png (1997) demonstrate that buy-back policies can in-
crease retail competition, thereby benefitting the supplier (even without stochas-
tic demand). Butz (1997), Deneckere, Marvel and Peck (1997), and Deneckere,
Marvel and Peck (1996) also study multiple retailer models. They suppose that
the retail price depends on the total quantity retailers attempt to sell. While
a retailer considers the impact of falling prices on his own inventories, he does
not consider how falling prices reduces the value of inventory held by the other
retailers. Therefore, after the retailers purchase their inventory they tend to
sell this inventory too aggressively, depressing the market price. The retail-
ers can anticipate this behavior when ordering, so they reduce their orders as
their expectation for p decreases. In other words, retail competition decreases
the incentive to hold inventory because it reduces the retailers’ profit margin.
The supplier can increase the retailers’ orders if she mitigates retail competi-
tion. This can be achieved with resale price maintenance conlracts that set a
minimum price that retailers can charge.

Anupindi and Bassok (1998) investigate a model with one supplier and two
retailers. Their model’s main twist is to incorporate consumer search between
the two retailers. They investigate competitive behavior when the retailers
make independent decisions as well as when they jointly pool their inventories.
In either case, they study how a supplier can benefit from offering a contract
with a holding cost subsidy, which is essentially a buy-back contract. (The
retailers incur holding costs on end of period inventory, so a holding cost subsidy
lets the retailers virtually sell inventory back to the supplier.)
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1.3 QUANTITY DISCOUNTS

There is a large literature on quantity discounts so this section concentrates on
the reasons why they are used.

Jeuland and Shugan (1983) suggest that quantity discounts can mitigate
double marginalization. Suppose the retailer pays w(q) for ¢ units, where for
quantities less than ¢° the marginal price paid is greater than the production
cost, i.e. w'(qlg < ¢°) > ¢, but w'(¢°) = ¢. It can be shown that the retailer
will choose ¢° since his marginal cost at ¢ equals the supply chain’s marginal
cost, c¢. Further, the supplier earns positive profits since the average wholesale
price per unit is greater than c. (See Moorthy, 1987, for additional technical
requirements. )

Quantity discounts can also help manage operating costs. Suppose the sup-
plier incurs a fixed order processing cost K, for each retailer order and let ¢
be a retailer’s average order. Thus, the average order processing cost per unit
is K,/q, which is decreasing in ¢. A retailer does not incur this cost, so a re-
tailer will order a smaller quantity than optimal for the supply chain. Quantity
discounts will encourage the retailer to order more.

A retailer’s order quantity also can influence the supplier’s holding cost.
Suppose the supplier incurs a production setup cost, so she will produce in
batches. For simplicity, say mgq is the supplier’s batch size, where m is a
positive even integer and ¢ is the retailer’s order quantity. Assuming constant
retailer demand and a zero lead time between the supplier and the retailer,
the supplier’s average inventory equals (m — 1)¢/2. Now suppose the retailer
doubles his order quantity to § = 2¢. If the supplier doesn’t change her batch
size, her average inventory is now (m/2 — 1)§/2. Since

(m/2—=1)g/2 < (m—1)q/2,

the supplier’s average inventory has declined. This result holds in more general
models. Hence, a retailer tends to order too little because he does not account
for the holding cost savings the suplier earns from a larger order quantity. For
more extensive treatment of quantity discounts see Lal and Staelin (1984), Lee
and Rosenblatt (1986), Weng (1995), and Boyaci and Gallego (1997).

1.4 COMPETITION IN THE SUPPLY CHAIN INVENTORY GAME

This section considers an infinite horizon, stochastic demand inventory game
between one supplier and one retailer. The rules of the game are detailed and
then the game is compared to other research. The optimal solution is described
and the competitive solution is characterized. Finally, several coordination
techniques are presented.

1.4.1 Model details

The supplier is stage 2 and the retailer is stage 1. Time is divided into an infinite
number of discrete periods. Consumer demand at the retailer is stochastic,
independent across periods and stationary. The following is the sequence of
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events during a period: (1) shipments arrive at each stage; (2) orders are
submitted and shipments are released; (3) consumer demand occurs; (4) holding
and backorder penalty costs are charged.

There is a lead time for shipments from the source to the supplier, Lo, and
from the supplier to the retailer, L;. Each firm may order any non-negative
amount in each period. There is no fixed cost for placing or processing an
order. Each firm pays a constant price per unit ordered.

The supplier is charged holding cost he per period for each unit in her stock
or on-route to the retailer. The retailer’s holding cost is he + hq per period for
each unit in his stock. Assume hs > 0 and Ay > 0.

Unmet demands are backlogged, and all backorders are ultimately filled.
Both the retailer and the supplier may incur costs when demand is backordered.
The retailer is charged aip for each backorder, and the supplier agp, where
a1 +az =1 and 0 < a; < 1. The parameter p is the total system backorder
cost, and (o, aq) specifies how this cost is divided between the firms. The
parameters (o, @) are exogenous.

These backorder costs have several interpretations. They may represent the
costs of financing receivables, if customers pay only upon the fulfillment of
demands. (This requires a discounted-cost model to represent exactly, but the
approximation here is standard in the average-cost context, analogous to the
treatment of inventory financing costs.) Alternatively, they may be proxies for
losses in customer good-will, which in turn lead to long-run declines in demand.
Such costs need not affect the firms equally, which is why flexibility is allowed
in the choice of «; € [0, 1]. Finally, they provide an approximation to lost sales.

In period t just before demand define the following for stage i: in-transit
inventory, I'T}, is all inventory in-transit between stages ¢ + 1 and stage ¢;
inventory level, IL;, is inventory at stage ¢ minus backorders at stage i (the
supplier’s backorders are unfilled retailer orders); and inventory position, 1P,
1Py = IL;+1T};. Note that these are local inventory variables and not echelon
inventory variables.

Each firm uses a base stock policy: Each period a firm orders a sufficient
amount to raise its inventory position plus outstanding orders to that level.
Define s; as stage i’s base stock level. In the inventory game’s only move, the
players simultaneously choose their strategies, s; € 0 = [0, 5], where s; equals
player i’s base stock level, o is player i’s strategy space and S is a very large
constant. (S is sufficiently large that it never constrains the players.) A joint
strategy s is a pair (s1,82). After their choices, the players implement their
policies over an infinite horizon. All model parameters are common knowledge
(all information is known and verifiable to all players).

Let D7 denote random total demand over 7 periods, and p” denote mean
total demand over 7 periods. Let ¢” and ®7 be the density and distribution
functions of demand over T periods respectively. Assume ®1(z) is continuous,
increasing and differentiable for £ > 0, so the same is true of ®7, 7 > 0.
Furthermore, ®*(0) = 0, so positive demand occurs in each period.
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This model is identical to the Local Inventory game studied in Cachon and
Zipkin (1997). They also consider a model in which firms track echelon inven-
tories and find that the tracking method does influence strategic behavior. The
notation in this model is generally consistent with Cachon and Zipkin (1997),
but there are some differences. (In Cachon and Zipkin, 1997, an overbar on the
local variables distinguishes them from the echelon variables. Echelon variables
are not considered, so to avoid notational clutter overbars are not used.)

There are three externalities in this game:

1. The retailer ignores the supplier’s backorder costs, so he tends to carry
too little inventory;

2. The supplier ignores the retailer’s backorder costs, so she tends to carry
too little inventory;

3. The supplier ignores the retailer’s holding costs, so she tends to carry
too much inventory. An increase in the supplier’s inventory leads to
an increase in the retailer’s inventory. (The supplier’s average delivery
time decreases, thereby raising the retailer’s average inventory for a fixed
retailer base stock policy.) Higher retail inventory benefits the supplier,
through lower backorder costs, but the supplier doesn’t pay the retailer’s
holding costs, so she tends to raise the retailer’s inventory more than she
should.

Clearly, the second and third externalities conflict so a priori it is uncertain
whether the supplier will carry too much or too little inventory. While a nu-
merical study confirms that either outcome is possible, it is generally observed
that supply chain inventory is too low in the competitive solution.

Chen (1997), Lee and Whang (1996), and Porteus (1997) study similar mod-
els. All assume stationary demand, serial supply chains, holding and backorder
costs, fixed lead times and common knowledge. Chen (1997) assumes the play-
ers attempt to minimize total supply chain costs, so they don’t have conflicting
incentives. In his model there is a delay between when a stage submits an order
and when its upstream supplier receives the order. In this model orders are
transmitted instantly. Further, he considers a supply chain with four stages.
Both Lee and Whang (1996) and Porteus (1997) study two stage supply chains,
but they assume the upstream stage only cares about her local inventory, i.e.
ag = 0. Lee and Whang (1996) assume firms minimize discounted costs instead
of average costs.

The supply chain inventory game diflers from the models of the previous
three sections. Unlike the double marginalization model in §1.1, demand is
independent of the player’s actions. Unlike the buy-back and quantity dis-
count models, the retailer’s orders are not always filled immediately because
the supplier may have insufficient inventory.
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1.4.2 Optimal Solution

The system optimal solution minimizes the total average cost per period. Clark
and Scarf (1960), Federgruen and Zipkin (1984) and Chen and Zheng (1994)
demonstrate that a base stock policy is optimal in this setting. The traditional
method to find the optimal solution allocates costs to the firms in a particular
way. Then, each firm’s new cost function is minimized. This section briefly
outlines this method.

Let G(ILy; — D') equal the retailer’s charge in period ¢, where

G4 () = haz]™ + (ha + p)[z]~

(Relative to the retailer’s actual costs, the retailer’s holding cost is reduced by
ho per unit, but his backorder penalty cost is increased by hg per unit.) Also
in period %, define G¢(I P1;) as the retailer’s expected charge in period ¢ + Ly,
where

Gily) = B |Gy — D).
Define s as the value of y that minimizes G5(y) :

h
(I)L1+1(S(1)) _ 2+p

_ _fedp (15)
hi4+ho+0p

This is the retailer’s optimal base stock level. Define the induced penalty
function,

G1(y) = G{(min{s{,y}) — G7(s7),
and define R
G3(y) = hay — ') + G1(y).

Note that G$(y) is non-linear in y.
In period ¢ charge the supplier G§(IP;), where

G3(y) = E |G3(y + 57 — D™2)|.
The supplier’s optimal base stock level, 8§, minimizes G§(-).

1.4.3 Game analysis

Define H;(s1, s2) as player i’s expected per period cost when players use base
stock levels (81,82). The best reply mapping for firm ¢ is a set-valued rela-
tionship associating each strategy s;, 7 # 4, with a subset of o according to the
following rules:

ri(s2) = {81 €o | Hi(s1,82) = rgng(x,SQ)}

ro(s1) = {82 €0 | Ha(s1,82) = Iznei(rl_ng(sl,x)}.
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A pure strategy Nash equilibrium is a pair of base stock levels (s}, s3), such
that each player chooses a best reply to the other player’s equilibrium base
stock level:

sy €rast) s} €ri(ss).

Retailer’s cost function. In each period, the retailer is charged hy + hg per
unit held in inventory and «4p per unit backordered. Define (¢ (ILM — Dl) as
the sum of these costs in period t,

G1(y) = (hs + ho) W] + cuply] -
Define G4 (IPM) as the retailer’s expected cost in period ¢ + L1,
G1(y) - R [@(y B DL1+1)}

(o0}

(h1 +h2) (y — p** 1) + (R + ha + ap) / (z —y)o 1T (z)da.

The retailer’s true expected cost depends on both his own base stock as well
as the supplier’s base stock. After the firms place their orders in period t — Lo,
the supplier’s inventory position equals so. After inventory arrives in period t,
the supplier’s inventory level equals sy — D%2. (The retailer orders D% over
periods [t — Ly + 1,%].) When s; — D%2 > 0, the supplier completely fills the
retailer’s period ¢ order, so IP;; = s1. When sy — D% < 0, the supplier cannot
fill all of the retailer’s order, and I Py; = 81 + 82 — D¥2. Hence,

Hl(Sl,Sg) = E[Gl (min{sl—l—SQ—DLQ,sl})]

= ®L2(s59)G (1) —|—/ o' (2)G1 (51 + 82 — x)dx.

Supplier’s cost function. Define ég(Ith — D) as the supplier’s actual
period ¢ backorder cost,

Galy) = agply]
and Ga(I Py;) as the supplier’s expected period ¢ + Ly backorder cost,

Goly) = E [ég(y . DL1+1)} .

Define N
Hy(s1,2) = hoplt + halz]T + Gy (sy + min {z,0}),
SO
H2(81782) = K [ﬁ2(81782 — DLQ)}

S2
= hgult —|—h2/ (52 — x)¢™2 (x)dx
0

O (59)Ga(s1) + / T 65 (2) (51 + 5 — 2)da.
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The first term above is the expected holding cost for the units in-transit to
the retailer (from Little’s Law), the second term is the expected cost for inven-
tory held at the supplier and the final two terms are the supplier’s expected
backorder cost.

Equilibrium analysis. The analysis of the game begins by characterizing
the cost functions and the best reply mappings.

Theorem 1 Hy(sy,82) is strictly convex in sg and Hy(s1,82) is strictly convex
in 8i.

Proof. It is sufficient to demonstrate that the second derivatives are posi-
tive. Differentiate Ha(s1,s2) :

OH. )
% = hg(I)LZ (32) _|_/ ¢L2 (l’)Glg(Sl + 8y — x)dx
2 o
2 o0
% = h2¢L2 (32) — ¢L2 (sz)Gé(sl) +/ ¢L2 (DC)G’Q’(SI Fosy— x)d:c
2 .

The second derivative is positive since Gh(y) < 0, G4(y) > 0 and hap’2(s3) > 0.
Differentiate Hy(s1,s2),

—aHé) = OP(s)Gi(s1) + [ 0" (2)Gl(s1+ 82 — w)da; (1.6)
1 52
5 o0
w = ®r2(s)GY(s51) +/ o' (2)GY (51 + 52 — w)d.
571 S2

Since G (-) is strictly convex, Hi(s1, s2) is strictly convex in s;. O

Since the cost functions are strictly convex, each player has a unique best
reply to the other player’s strategy, a useful result to demonstrate existence
of an equilibrium. The next two theorems further characterize the best reply
mappings. When both players care about backorder costs (a; > 0, ag > 0),
each player will select a positive base stock. Further, as one player reduces
its base stock, the other player will increase its base stock by a lesser amount.
This result is used to demonstrate that there exists a unique Nash equilibrium.

Theorem 2 73(s1) is a function; when ag =0, ra(s1) = 0; and when ag > 0,
ro(s1) > 0 and —1 < rj(s1) <O0.

Proof. From Theorem 1 Hs(sy, $2) is strictly convex in sg, so there a unique
base stock that minimizes the supplier’s cost. When as = 0 the supplier incurs
no backorder costs, so she chooses s3 = 0 to incur no holding costs. When
ag > 0, the supplier’s first order condition determines her optimal sg, but the
first order condition is never satisfied at s = 0, hence r2(s1) = s2 > 0. Assume
59 > 0. From the implicit function theorem,

?Hy 0%H,

!

S 1.
o) = (ol G (17)
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_0%H;
EEPY-ER

(ha — Gy(s1)) 972 (s2) + Fo5

?

where
9% H. >0
= (= Gys1)) 6 (50) + | 0P (@)C(s1 + 32— )
2 S2
O H —/OO "2 (2)GY (51 + 89 — x)dx
Asa0sy 5o 2371 2 ’

The cross partial of Hs is positive because G4 > 0. The denominator of (1.7)
is positive because G5(s1) < 0 and ¢¥2(s2) > 0. So —1 < 7h(s1) < 0. O

Theorem 3 71(s2) is a function; when oy =0, r1(sg) = 0; when 1 > ag > 0,
r1(s2) > 0 and —1 < ri(s2) < 0.

Proof. r; (82) is a function since Hy is strictly convex in s1. When a; = O the
retailer incurs no backorder costs, so he chooses s; = 0 to incur no holding costs.
When a; > 0, the retailer’s first order condition determines his optimal sy, but
the first order condition is never satisfied at s; = 0, hence 7"1(82) =5 > 0.
Assume 1 >« > 0. From the implicit function theorem

Ti(SQ) _ _62H1(81782) 62H1(81782)
95,059 ds?
Rt s )
DL2(89)GY (1) + fsc;o ¢L2 ()G (81 + 89 — x)da

From Theorem 2, s > 0 (because ag > 0). Therefore, ®X2(52)GY(s1) > 0.
This implies —1 < r{(s2) < 0. O

Theorem 4 (s},s3) is the unique Nash equilibrium.

Proof. From Theorem 1.2 in Fudenberg and Tirole (1991), a pure strat-
egy Nash equilibrium exists if (1) each player’s strategy space is a nonempty,
compact convex subset of a Euclidean space, and (2) player #’s cost function
is continuous in s and quasi-convex in s;. By the assumptions and Theorem
1, these conditions are met, so there is at least one equilibrium. It remains
to show that there is a unique equilibrium. Assume oy = 0; r1(s2) = 0, and
since 73(-) is a function, 73(0) is unique. Assume a3 = 1; r2(s1) = 0, and since
r1(+) is a function, r1(0) is unique. Now assume 0 < oy < 1. From Theorem
2, ro(s;) = s5 > 0. Suppose there are two equilibria, (s7,s3) and (51, 352).
Assume s < 53. From Theorem 3, this implies that §; < sj. From the same
theorem, 7{(s2) > —1, so $2 — s > s] —§1. But from Theorem 2, 75(s1) > —1,
which implies 53 — s5 < s} — 51, a contradiction. The analogous contradiction
is obtained if s > §5 is assumed, so the equilibrium is unique. O
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Figures 1 and 2 display the best reply functions in this game as well as the
Nash equilibrium and the optimal solution. In neither case does the Nash
equilibrium coincide with the optimal solution.

Theorem 5 Assuming oy < 1, s + 85 < 57 + s5.

Proof. See Cachon and Zipkin (1997), Theorem 15 for proof. O

It follows immediately from Theorem 5 that the system optimal solution is
not a Nash equilibrium whenever oy < 1. When a3 = 1 the system optimal
solution can be a Nash equilibrium under a very special condition, see Cachon
and Zipkin (1997). Therefore, competitive selection of inventory policies (vir-
tually) always deteriorates supply chain performance (i.e. leads to higher than
optimal cost).

A numerical study assesses the magnitude of the competitive penalty (the
percentage increase of the Nash equilibrium cost over the optimal cost). The
Nash equilibrium and the optimal policies are found for each of the 2625 sce-
narios constructed from the following parameters:

ay €{0,0.1,0.3,0.5,0.7,09,1} as=1—ay

Ly €{1,2,4,8,16} Lo €{1,2,4,8,16}
hy € {0.1,0..3,0.5,0.7,0.9} ho =1— Iy
p € {1,5,25}

In each scenario demand is normally distributed with mean 1 and standard
deviation 1/4. Table 1 summarizes the data.

Table 1: The distribution of competition penalties

a1 Minimum 5% percentile Median 95 percentile Maximum

0 107% 117% 804% 5,930% 10,939%
0.1 5% 8% 37% 96% 119%
0.3 2% 3% 9% 19% 26%
0.5 1% 1% 3% 6% 8%
0.7 0% 0% 1% 1% 9%
0.9 0% 0% 1% 17% 45%

1 0% 0% 1% 34% 116%

When each firm cares equally about backorder costs, a; = g, the median
competition penalty across scenarios is 3% and the maximum is 8%. When the
backorder preferences are asymmetric, a; = 1 or as = 1, then the competition
penalty can be quite large. When the retailer cares little about backorders
even the median competition penalty is large. This occurs because the retailer
chooses to carry little inventory, hence the supplier can do little to prevent
consumer backorders. On the other hand, when the supplier cares little about
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backorders the median competition penalty is low while the maximum penalty
is large. This occurs because the supplier chooses to carry little inventory but
in some cases the supplier carries little inventory in the optimal solution. That
happens when the supplier’s holding cost is large (when h; = O there is no
advantage to keeping inventory at the supplier) or when Ly is small relative to
L1. Overall, while competition does deteriorate supply chain performance, the
magnitude of this problem is clearly context specific.

1.5 COORDINATION IN THE SUPPLY CHAIN INVENTORY GAME

According to Theorem 5, the optimal solution is virtually never a Nash equi-
librium. Hence, the firms can lower total costs by cooperatively choosing the
optimal base stock levels, (s,s5). But any agreement to choose the opti-
mal policy must eliminate each player’s incentive to deviate. This is done by
appropriately modifying each player’s incentives with transfer payments.

1.5.1 Linear contracts

Cachon and Zipkin (1997) propose that the firms adopt a transfer payment
contract with constant parameters (¢1, 32, 51). This contract specifies that the
period t transfer payment from the supplier to the retailer is

t1dy¢ + BaBay + B1.Bqy,

where I7; is the retailer’s on-hand inventory, and B;; is stage ¢’s backorders, all
measured at the end of the period. There are no a priori sign restrictions on
these parameters, e.g. ¢t; > 0 represents a holding cost subsidy to the retailer
and ¢; < O represents a holding fee. Note that ¢; > 0 is related to a buy-back
contract: having the supplier compensate the retailer for his holding cost is like
having the supplier (virtually) purchase some of the inventory back from the
retailer.

Define T1(IP;) as the expected transfer payment in period ¢ 4+ L; due to
retailer inventory and backorders, where

Ti(y) = Eluly— D"+ 8y — D7)

= =) a6 [ " (@ —y)h ().

Define T'(s1, s2) as the expected per period transfer payment from the supplier
to the retailer,

T(s1,82) = FE[Bs [s2— D"] +Ti(s1 +min{0, s, — D*?})]

= B [ M @) — s2)du+ B (5)Ti (51)

s2

—0—/00 L2 (2)Ty (51 + 89 — x)dx.
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Note that s; influences the retailer inventory and backorders, but not the sup-
plier’s backorders. Let Hf(sl, $2) be player ’s costs after accounting for the
transfer payment,

Hi(s1,82) = Hi(s1,82) —T(s1,502),
Hi(s1,82) = Ha(s1,82) +T(s1,82).

The objective is to determine the set of contracts, (t1,032,31), such that
(89,55) is a Nash equilibrium for the cost functions H!(sy,s). With these
contracts the firms can choose (39, s§), thereby minimizing total costs, and also
be assured that no player has an incentive to deviate.

To find the desired set of contracts, first assume that H f is strictly convex in
si, given that player j chooses s7, j # 1. Then determine the contracts in which
s¢ satisfies player ¢’s first order condition, thereby minimizing player ¢’s cost.
Finally, determine the subset of these contracts that also satisfy the original
strict convexity assumption.

The following are the first order conditions:

1
S = 0= @t (s0) (Gi(s1) — Ti(51)) (18)
51
—0—/ "2 (2) [G (51 + 82 — ) — T} (51 + 82 — 7)] da;
aa—Hé = 0= o+ (ha + o) DP2(s2) (1.9)
52

+ [0 Gy + 52— ) + T+ 52 )] d

Define o = ®£2(s3). (This is the supplier’s in-stock probability, essentially
her fill rate.) Furthermore, the supplier’s first order condition in the optimal
solution is

0= —p+ (p+ ho)®2(59) + (hy + ho + p) / L2 (2) P89 4 85 — x)dx,
53

or,

p—(p+h2)ye

~ Lo (p)pErt1 (g2 + 69 — 2)da =
¢ () (1 2 ) h1+h2+p

o
83

(1.10)

Using (1.8), (1.9) and (1.10) yields the following two equations in three un-
knowns,

4
o = 1 — 1.11
2p <h1+h2> 1— B, ( )
ha 11—
he = . 1.12
2 <h1+h2> L1+< Y2 )62 (112)
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It remains to ensure that the costs functions are indeed strictly convex.

Theorem 6 When the firms choose (i1, P2,51) to satisfy (1.11) and (1.12),

and
(Z) hi4+he>t1 20

(i) B2 >0
(iti) ayp > By > —agp,

then the optimal policy (s, s3) is a Nash equilibrium.

Proof. When the following second order conditions are satisfied, H} is
strictly convex in s;, assuming s; = s7, j # 1

?H!
6321 = o (s2) (G (51) = T{'(51))
1
—0—/ L2 () (G (51 + 53 — 1) = T'(51 + 83 — 7)) dx > 0;
d?H!
> (ha + B2)6"(s2)
0s5

+/ L2 () (G (51 + 52 — x) + T} (81 + 52 — ) dw > 0.

The first inequality reduces to
hl +h2+0&1p—L1 —61 > 0.

Substituting (1.11) yields ¢; < hy+hg and B; < ayp. For the supplier sufficient
conditions are

agpt+u+6 = 0
hy + B2 + agp + B1 — (agp + 11 + B1) @ T1(s9) > 0.

Combining the first inequality with (1.11) yields ¢; > 0 and 8y > —agp. The
second inequality, along with (1.11) and (1.12), yields 8z > 0. O

These are reasonable conditions: The first requires that the retailer’s inven-
tory subsidy not eliminate retailer holding costs; the second stipulates that the
supplier be penalized for her backorders; and the third states that the supplier
should not fully reimburse the retailer’s backorder costs, and the retailer should
not, overcompensate the supplier’s backorder costs.

To help interpret these results, consider the three extreme contracts where
one of the parameters is set to zero:

i) u=0 Bo = T25ho f1 = —agp
i) t1="hi+h B2a=0 B1=aip

18) 1 = ag(hy +hg) [o= 17?2041712 B1=0

(Of these three contracts, the second does not meet the conditions in Theorem
6, because the supplier fully compensates the retailer for all of his costs. The
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retailer’s incentive to choose the optimal policy is weak: s{ is a Nash equilibrium
strategy, but any s; is too.)

With the first contract the retailer fully reimburses the supplier for the sup-
plier’s consumer backorder penalty. However, the supplier still carries inventory
because she pays a penalty for her local backorders. With the third contract the
supplier subsidizes the retailer’s holding costs, but not fully (provided ag < 1).
In addition, the supplier is penalized for her backorders, but less than in the first
contract. When the retailer incurs all backorder costs (i.e. a3 = 1, a2 = 0), only
a supplier backorder penalty is required, 52 = yaha/(1 — v2). Hence, the tradi-
tional cost allocation scheme used to obtain the optimal solution is needlessly
complex. (Recall that scheme requires a retailer holding cost subsidy, a retailer
backorder penalty surcharge and a non-linear supplier backorder penalty.)

1.5.2 Accounting inventory

Chen (1997) proposes a linear incentive alignment scheme, but his scheme is
not, based on actual inventory levels. Instead, his scheme is based on accounting
inventory, where stage ¢’s accounting inventory is the actual inventory level it
would have if stage ¢ + 1 always fills its orders immediately. Since the supplier’s
lead time is assumed to be perfectly reliable, her accounting inventory always
equals her actual inventory. On the other hand, the retailer’s accounting in-
ventory can be greater than his actual inventory level since the supplier will
sometimes only partially fill an order.

To implement accounting inventory to align incentives one of the firms is
assigned responsibility for all actual supply chain costs. (In Chen, 1997, this
role is played by a single owner who is independent of the managers that actually
operate each location.) While either firm can be given this honor, for ease of
exposition, assume the supplier bears all costs. This means that each period
the supplier pays the retailer’s actual holding and backorder costs,

(h +h2) Ly = D']" 4+ aup [ILy — D'] .

This leaves the retailer with zero costs, and hence little incentive to choose
the optimal policy. To provide an incentive, each period the retailer pays the
supplier h{ per accounting inventory, and p® per accounting backorder. These
costs are chosen so that s{ minimizes the retailer’s payment to the supplier,
and hence the retailer will choose s§.
Define N
G () = hla)™ +p°lal

which is the retailer’s payment to the supplier in a period that ends with
accounting inventory x. Define

Gi(y) = B |Gi(y — DY

which is the retailer’s expected payment in period ¢+ I,; when he begins period
t with accounting inventory y. Since a retailer’s accounting inventory always
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equals s; just before demand (because accounting inventory assumes the sup-
plier always fills the retailer’s orders), G§(s1) is the retailer’s expected cost per
period. It is easy to confirm that G%(sy) is strictly convex in s; (assuming
h$ > 0 or p* > 0), and the optimal s, is

a

Plitl(g) = _r .
(1) h§ +p°

From (1.5), $¢ is optimal for the retailer whenever

Pt _hetp
¢ +p*  hi+ho+p

(1.13)

o~

The supplier can choose from an infinite number of (p%, h%) pairs that satisly
(1.13).

Note the similarity between (1.13) and (1.4). In each case the retailer faces
a newsvendor problem so the supplier need only modify the retailer’s costs in
a manner that sets the retailer’s critical fractile equal to the supply chain’s
optimal critical fractile. In each case the retailer is assured to receive his full
order, so the retailer’s decision is independent of the supplier’s decision, and in
turn independent of the demand distribution. In Cachon and Zipkin (1997) the
retailer is not assured to receive his full order. Hence, the coordinating param-
eters depend on the supplier’s base stock level and the demand distribution,
v = DE2(s3).

Will the supplier choose $37 The retailer’s payment to the supplier is inde-
pendent of s, so the supplier does not consider this payment when choosing
$2. The supplier’s actual cost equals the supply chain’s cost (because she pays
the retailer’s actual cost in addition to her own), so (¢, s5) minimizes her ac-
tual cost. Hence, the supplier will choose s§ and a (ﬁ“,ﬁ%) pair to induce the
retailer to choose s7.

While there are many (ﬁ“,ﬁ%) pairs to choose from, the supplier’s expected
payment from the retailer depends on which pair is chosen. To see this, when
the supplier chooses a (p*, h{) pair,

1— pli+l(s9)
Go(g° — 7o A1 o
1(81) p < (I)L1+1(S‘17) (81 K

1 > o
+(I)L1+1(3‘17) /S$ ¢L1+1(x)(x - 31)dz> .

L1+1)

The term in the above parentheses is independent of (p® ,ﬁ%), so the supplier
can choose to make GG§(s9) arbitrarily small or large (by adjusting p*). Hence,
the supplier can offer the retailer a contract that leaves the retailer no worse off
than in the Nash equilibrium, yet the retailer chooses the optimal policy. This
is a great deal for the supplier because the supplier captures all of the benefits
of coordination. (Since the retailer’s cost is unchanged, the supplier’s cost is
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reduced by the difference between the Nash equilibrium cost and the optimal
cost.)

Notice that the accounting inventory incentive scheme essentially sells the
supply chain to the supplier, thereby creating a single agent whose objective is
to minimize total supply chain costs. The supplier then modifies the retailer’s
costs to make the retailer behave as the supplier wishes. Since the supplier buys
the supply chain, the supplier can capture all of the benefits of coordination.

1.5.3 Non-linear payments

Lee and Whang (1996) propose an incentive alignment scheme that implements
a combination of linear and non-linear transfer payments. Clark and Scarf
(1960) also propose these payments to prove that (s, s3) is optimal, but Lee and
Whang demonstrate that with these payments (s, s3) is a Nash equilibrium.

In the linear portion of this scheme the supplier pays the retailer i for each
unit in the retailer’s inventory but the retailer pays the supplier aop 4+ ho per
backorder. Let 77" (ILy;) be the retailer’s expected transfer payment to the
supplier in period ¢ + L1,

TT(y) = —h2E[(y — D"71)¥] + (aep + ko) E[(y — D7) 7).
Define

Ty) = Giy)+T7 ()

= hi(y—p" )+ (hi +ha +p) /Oo(x —y)o™ T (x)da
Y

so GT(ILy,) is the retailer’s expected cost in period ¢ + L;.

The non-linear portion of this scheme is a payment from the supplier to the
retailer whenever the supplier is unable to fill the retailer’s order. Specifically,
in period ¢ the supplier pays the retailer 77 (s1, I L1;),

I} (s1,y) = G (min{y, 51 }) — G (s1).

When IL1; = s1, the supplier fills the retailer’s period ¢ order, so I{L(sl, ILU) =
0. When IL; < sy, the supplier is unable to fill completely the retailer’s period
t order, so Iy (s1,1Ly;) > 0.

Taking all of the transfer payments into consideration, the retailer’s expected
per period cost is HJ'(s1, 82),

HT(s1,80) = FBE[GT(min{sy + sy — D2 s:})] — B[T} (51,51 + s — D*?)]
= G7(s1)

So the retailer’s expected cost is independent of sg. Since G7(y) = G4(y), 5
minimizes the retailer’s cost.

Now consider the supplier’s cost, assuming the retailer chooses s5. (This as-
sumption is non-trivial. If s; # s¢, the supplier’s cost function is not necessarily
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convex.) Define

Gi(y) = E|Gly— DY) —17(y)
hoE[(y — DM TN T — o B[(y — D™ 1) 7]
= holy —p™

so G%(ILy,) is the supplier’s period ¢ + L; backorder cost minus the retailer’s
transfer payment. Define

HJ (s1,2) = hop™ + hofz]™ 4+ G (s1 + min{z,0}) + T (s, 51 + )

and the supplier’s cost including all transfers, H}(s1, 82),
H}(s1,82) = E [ﬁg(sl,SQ - DLQ)]
52
= et ey [ 50— )07 (@)do + 8 ()G ()
0

+ oL (2)GB (81 + 59 — x)dx

s2
o LQ mn LQ mn
+/ 12 ()G (51 + 52 — @)dx — (1 — 72 (52)) Ch(s1)
s2
Simplify the above,
HY(s1,82) = ho(s2+s — ™) —|—/ ¢F2 (x)GT (51 + 52 — )dx
s2

— (1 — @™ (s2)) GT(s1).

It is easy to show that HZ(s$,s2) = G5(s2), so HY(s9,s2) is minimized with
89 = s3. Therefore, (s, s3) is a Nash equilibrium since each player minimizes
its cost given the strategy choice of the other player.

1.5.4 Responsibility tokens

Porteus (1997) proposes an incentive scheme, called responsibility tokens, that
blends some of the features of the non-linear scheme in Lee and Whang (1996)
with some of the features of accounting inventory. As with accounting inven-
tory, the retailer receives perfectly reliable deliveries from the supplier, but the
implementation of this assumption is different. Whenever the supplier is un-
able to fill a retailer order she issues responsibility tokens to cover the portion
of the order she cannot fill. From the retailer’s perspective these responsibility
tokens are equivalent to real inventory. Tokens issued in period ¢ are received
in period  + 1. The retailer incurs holding costs on these tokens and can use
them to prevent backorder costs. To explain, suppose 7 tokens are issued in
period ¢ and ¥ is the retailer’s actual inventory level in period ¢+ I.; when costs
are measured. The retailer’s actual holding and backorder costs are

(h1 +h2)ly]™ + aiply] .
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but the supplier pays the retailer aypmin{[y]~,7} to compensate the retailer
for those backorder charges that the retailer could have avoided if his tokens
were real inventory. However, the retailer pays the supplier (hy +ho)[T—[y] ]™
to reward the supplier for saving the retailer actual holding costs. Once the
retailer’s actual costs are combined with these transfer payments, the retailer’s
costs are

(h1 + ho)ly + 7)™ +auply + 7] (1.14)

There are some additional transfer payments. As in Lee and Whang (1996),
the supplier pays the retailer ho per unit of inventory and the retailer pays
the supplier asp + ho per backorder, where inventory and backorders include
tokens. Following the above example, the retailer receives ha[y + 7] from the
supplier but pays (aop—+ha)[y+ 7]~ to the supplier. Combining these transfers
with (1.14), the retailer’s costs in period ¢ + L are

haly + 717+ (p+ o)y + 7]~

Since y + 7 = 5, — DI+ G (s1) is the retailer’s expected cost per period,
which is minimized by sj.

Since s¢ minimizes the retailer’s actual costs plus his transfer payments for
any sz, the retailer will choose . Given that G7(s9) will be the retailer’s cost,
the supplier’s costs must equal all remaining costs in the system, which equals
(75(s2). Hence, the supplier also will choose the optimal policy, s5, and (9, s5)
is a Nash equilibrium.

Although there is a strong resemblance between responsibility tokens and
the non-linear scheme in Lee and Whang (1996), there is a subtle difference.
With responsibility tokens the retailer receives perfectly reliable supply, so the
retailer’s costs are independent of the supplier’s base stock. (This is also the
case with accounting inventory.) Hence, it is the supplier that bears the
actual cost consequence of her late deliveries. With the non-linear scheme the
retailer doesn’t receive perfectly reliable supply, but the supplier does pay the
retailer an amount that exactly compensated the retailer for the expected cost
consequence of any late delivery. Hence, in this case the retailer pays the actual
cost consequence of late deliveries. This distinction is immaterial when all of
the players are risk neutral (as is assumed in each case). However, it becomes
relevant if one of the players were risk averse. For example, if the retailer were
risk averse then the supply chain may be better off using responsibility tokens
to let the risk neutral supplier bear the consequence of late deliveries. On the
other hand, if the supplier were risk averse, the supply chain may be better
off using the non-linear scheme since then the supplier only pays the expected
consequence of her action. (In general, the most risk neutral player should bear
the supply chain’s risk. See Tirole, 1990, for a discussion of risk sharing among
players with heterogenous tastes for risk.)
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1.6 OTHER RESEARCH

There are many other supply chain inventory management models that dif-
fer significantly from the ones already described. The section reviews these
models and highlights additional supply chain externalities and coordination
techniques.

1.6.1 Multiple Retailers with Stochastic Demand

Multiple retailers substantially complicates supply chain inventory analysis.
Optimal policies are not known and it is difficult even to find the best policy
within a reasonable class of policies, e.g. reorder point policies. Nevertheless,
some results have been obtained.

Cachon (1997) considers a two echelon supply chain with a single supplier
and N retailers. Each retailer faces identically distributed Poisson demand.
Inventory is review continuously and each location implements an (2, Q) policy:
when a location’s inventory position equals R it orders (Q units from its supplier.
There is a fixed lead time to replenish the supplier and a fixed lead time between
the supplier and each retailer. There are holding costs and both the supplier
and the retailers care about consumer backorder costs, as in §1.4.

In this model Axsater (1993) demonstrates how to find optimal (R, () poli-
cies assuming centralized control. Cachon (1997) assumes each location selects
its reorder point to minimize its own costs given that each other player will do
the same. The search for Nash equilibria in reorder point policies is complex
because discrete demand implies that each player’s strategy space in discrete
(i.e. non-convex), which precludes the implementation of standard existence
theorems. (It is common that there does not exist an equilibrium in games with
non-convex strategy spaces.) However, it is shown that this is a supermodu-
lar game. Roughly speaking, in a supermodular game each player’s strategy
space is ordered and as player j chooses a higher strategy, player ¢ will also
wish to choose a higher strategy. In the inventory game the supplier’s strat-
egy space (reorder points) are given the natural ordering, i.e. a higher reorder
point is a higher strategy, but the retailers are given the opposite ordering,
i.e. a higher reorder point is a lower strategy. Hence, as the supplier increases
her reorder point, a retailer will decrease his reorder point. See Milgrom and
Roberts (1990) for a review of supermodular games. The supermodular prop-
erty implies that there exists a pure strategy Nash equilibrium, and further, it
provides an algorithm to find all Nash equilibria.

In a numerical study it is found that there can be multiple equilibria and
the optimal reorder point policies can be a Nash equilibrium. These findings
contrast with the results from the single retailer model. However, as in the
single retailer model, the competition penalty is relatively moderate when the
firms incur equal backorder costs but often quite large when the firms incur
asymmetric backorder costs. Additional research is needed to better understand
why these results occur. There are several candidate explanations: the multi-
retailer model has a discrete strategy space, whereas the single retailer model
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has a continuous strategy space; and in the multi-retailer model the allocation
of inventory among the retailers is an issue, whereas it is not in the single
retailer model.

Anderson, Axsater and Marklund (1996) study almost the same model, but
they do not investigate competitive decision making. Instead, they provide a
mechanism to decouple the supply chain: each location solves a problem that
is independent of the reorder points chosen by the other locations. Specifi-
cally, the mechanism imposes on the supplier a linear backorder penalty cost.
The supplier’s problem is to choose a reorder point that minimizes her actual
holding costs plus this backorder penalty cost. This problem depends on the
retailers’ ordering process, but the retailers’ ordering process is independent
of their reorder points. So the supplier can solve her problem independent of
the retailers. The retailers minimize their actual holding and backorder costs
assuming a deterministic lead time which equals the retailers’ expected actual
lead time. Anderson, et al. (1996) are unable to explicitly determine the correct
backorder penalty, so they search for a good penalty via an iterative procedure.
The procedure is not guaranteed to converge to the optimal reorder points, but
they found that the procedure worked quite well in a numerical study.

In a significantly different model, Hausman and Erkip (1994) also study
a decoupling technique to coordinate a supply chain model originally studied
by Muckstadt and Thomas (1980). This model has multiple retail locations,
multiple products and emergency shipments. Instead of transfer payments,
they impose fill rate constraints on each location and show how to choose these
fill rates so that each location selects near optimal policies.

1.6.2 Multiple Retailers with Deterministic Demand

Chen, Federgruen and Zheng (1997) consider a multi-echelon supply chain with
multiple retailers. Each retailer faces deterministic demand that is decreasing
in the retailer’s price. Demand curves can differ across retailers. Firms incur
holding and ordering costs. To manage each retailer’s account, the supplier
incurs a fee that is increasing and concave in the retailer’s purchase quantity.
Hence, the account management fee per unit sold is decreasing in sales. Re-
tailers choose their retail prices and their order intervals (time between orders,
which equals the order quantity divided by the demand rate). The supplier
chooses her wholesale price and her order interval. They assume all of the
firms choose power-of-two policies: a base order interval is chosen and then all
firms choose their order interval to be a power of two multiple of this base inter-
val. For fixed prices (and hence demand rates), Roundy (1985) demonstrates
that power-of-two policies are guaranteed to be within 2% of the optimal cost.

Several incentive conflicts occur in this model. The retailers tend to price
too high because they don’t consider the supplier’s profit when choosing their
sales rate, i.e. double marginalization. They are also biased towards lower than
optimal sales because they don’t incur the account management fee. This ex-
ternality is somewhat different than the order processing externality described
in §1.3 because it is based on average sales and not the order frequency. Finally,
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the supplier’s holding cost is non-increasing in the retailer’s order interval, so
the retailers tend to choose order intervals that are shorter than optimal.

Unlike in the stochastic demand models, in the deterministic model it is
implicitly assumed that the supplier never makes a late delivery. Hence, the
supplier’s order interval has no impact on the retailers’ costs. Only the sup-
plier’s wholesale price effects the retailers’ costs.

Chen, et al. (1997) demonstrate that when the supplier chooses the optimal
order interval, the supplier can announce a wholesale price schedule that makes
the retailers choose the optimal retail prices and order intervals. This whole-
sale price per unit equals the supplier’s marginal cost plus a sales volume fee
plus an order interval fee. The sales volume fee equals the supplier’s account
management cost per unit given a retailer’s sale volume, so the retailers ex-
actly compensate the supplier for her account management costs. The order
interval fee is non-increasing in a retailer’s order interval length, and exactly
compensates the supplier for her holding costs. With this scheme the supplier
incurs her ordering costs, but the retailers incur all other costs, either directly
or indirectly through the wholesale price. Further, the retailers receive all sales
revenues, so they earn more than the supply chain’s optimal profits. To gain
the supplier’s participation, the retailers clearly must share some of the profits
via lump sum payments.

1.6.3 Capacity Allocation

Consider a supply chain with a single supplier and multiple retailers. Demand
occurs in a single period. The supplier has limited capacity, so whenever the
retailers order more than capacity, the capacity must be allocated among the
retailers. How much will each retailer order and how much capacity will the
supplier build?

Lee, Padmanabhan and Whang (1997) call this the shortage game. In their
version of the game the supplier has uncertain yield, so even though the retail-
ers know how much they all want, they don’t know how much will be available.
If they order more than the supplier produces, the supplier allocates the pro-
duction proportional to their order quantities. Lee, et al. (1997) demonstrate
that each retailer will order more than their desired quantity.

Cachon and Lariviere (1996) study a different shortage game. The supplier’s
capacity is known but each retailer has private information about his own de-
mand: while a retailer knows his own expectation of demand, he does not know
the demand expectations of the other retailers. Hence, each retailer is uncer-
tain about how much the other retailers will order. There are several incentive
problems in this setting. The retailers tend to purchase too little relative to
the supply chain optimal, because the supplier charges above marginal cost, i.e.
double marginalization. But when capacity is scarce, a retailer tends to order
too much because he does not consider the value of scarce inventory to other
retailers: the supply chain should allocate inventory to the retailer with the
highest marginal value for inventory, but a retailer with a low marginal value
may nevertheless receive a larger allocation by increasing his order. There are
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also incentive problems with the supplier. Since the supplier faces random de-
mand (she doesn’t know the retailers’ expectations), and since she does not
consider the retailers’ profit margin on each unit, the supplier tends to build
less than the supply chain optimal capacity.

Cachon and Lariviere (1996) identify a broad class of allocation schemes
that induces truth telling behavior among the retailers, i.e. the retailers or-
der their desired quantities. Another class of allocation schemes induces the
retailers to inflate their orders. In a numerical study it is found that the order
inflation schemes generally outperform the truth-inducing schemes. There are
several reasons for this result. Double marginalization makes the retailers or-
der too little, but an order inflation allocation scheme mitigates this problem.
The problem with order inflation is that it might lead to a poor allocation
of inventory among the retailers. The worst case scenario is that a retailer
with low demand ends the period with excess inventory while a retailer with
high demand ends the period with substantial shortages. However, this gener-
ally doesn’t happen in equilibrium, because equilibrium orders correspond with
needs, i.e. the retailer with the highest need inflates his order the most, thereby
receiving the greatest allocation. So even though retailers inflate their orders,
inventory allocations tend to be reasonable. Finally, retailer order inflation also
induces the supplier to build more capacity, which can benefit everyone in the
supply chain.

Several other shortage gaming models have been studied. In a multi-period
model, Cachon and Lariviere (1997) study turn-and-earn allocation of scarce
capacity, a scheme commonly used in the automobile industry. Mallik and
Harker (1997) study capacity allocation in an internal supply chain with mul-
tiple production managers. See Ha (1996) and Corbett (1998) for other supply
chain inventory models with asymmetric information.

1.6.4 Information and Production Timing

Predicting demand for seasonal products is notoriously difficult. However, it
has been frequently observed that early season sales provide excellent indica-
tions of total season sales (see Fisher and Raman, 1996). So retailers would
like to be able to replenish inventory after observing early season sales. But
delayed production is usually more expensive than early production, so suppli-
ers prefer to have full production commitments well before the season begins.
Hence, firms face a conflict between early cheap production with unpredictable
demand and late expensive production with reliable demand.

Donohue (1996) studies this problem in a supply chain with one manufac-
turer and one buyer. The buyer places an initial order and then the manufac-
turer decides her initial production quantity. The buyer then observes a signal
that improves the buyer’s demand forecast. The buyer places a second order
and the manufacturer decides her second production quantity. This second
production is more expensive than the first. Finally, actual demand is realized.
She demonstrates that a buy-back contract makes the firms choose the centrally
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optimal decisions. Further, the buy-back price is independent of the demand
distributions, as in §1.2.

Barnes-Shuster, Bassok and Anupindi (1998) expand upon Donohue’s model.
In their model there are two demand periods. The sequence of events follows:
the buyer makes firm orders for delivery in each period and also purchases
options for additional units to be delivered after the first demand period; the
supplier purchases raw material and makes an initial production; the buyer
receives his first period order and stochastic demand occurs; the buyer receives
his period two firm order plus he can exercise his options for a per unit exercise
fee; the supplier delivers the buyer’s period two firm order plus exercised op-
tions; and stochastic demand occurs. The buyer incurs a per unit holding cost
for inventory carried from period one to two. The supplier’s total production
over the two periods is limited by the quantity of raw material purchased at
the start of the game. Hence, the supplier is required to purchase sufficient
raw material to cover the buyer’s firm orders and potentially all of his options.
In addition to the per unit cost of raw material, there is a per unit production
cost which is higher in period two than in period one.

They find that marginal cost pricing of these options contracts doesn’t co-
ordinate the channel. The issue is the period two option exercise price. Since
period one production is cheaper than period two production, and since there is
an inventory holding cost at the retailer, the supplier may have more inventory
at the start of period two than is needed to fill the buyer’s period two firm
order. From the supply chain’s perspective, these excess units should certainly
be moved to the retailer because they cannot fill period two demand while at
the supplier. Only with a zero exercise price will the buyer necessarily order
these additional units. However, a zero exercise price also means that the buyer
will necessarily exercise all of his options. This may require the supplier to con-
duct some period two production, which has a greater than zero marginal cost.
Hence, a zero exercise price may cause the buyer to exercise too many options
from the supply chain’s perspective, but a non-zero option may cause the buyer
to exercise too few options. To summarize, marginal cost pricing doesn’t work
in this setting because the supply chain’s marginal cost of moving additional
units to the buyer in period two is not independent of the quantity moved.

Eppen and Iyer (1997) also study option like contracts, which they call
backup agreements. However, they do not consider the issue of channel coor-
dination.

Tsay (1997) studies a setting in which the supplier makes one production,
which occurs after the retailer’s initial order, but before the retailer observes a
signal of demand. The retailer places his firm order after observing this signal.
The firm order may or may not be constrained by the initial order. If there is no
link between them, the retailer is likely to provide a meaninglessly high initial
order. Tsay (1997) proposes to link them via a quantity flexibility contract. If ¢
is the initial order, these contracts specify that the firm order can be no greater
than (1 4 «)¢ and no less than (1 — w)q, for w € [0,1] and & > —w. Since
the supplier allows the retailer to request up to (1 + «)q, Tsay assumes the
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supplier produces (1 + &)q, thereby guaranteeing that the retailer could indeed
receive his maximum order. (See Cachon and Lariviere, 1997, for a discussion
of a model in which it is not assumed that the supplier will necessarily live up
to her commitments.) It is shown that these contracts can guarantee that each
firm will choose supply chain optimal actions. Hence, (1 + «)¢ must equal the
supply chain optimal production quantity.

Quantity flexibility contracts are more complex than buy-back contracts. A
buy-back contract allows a retailer to return any portion of his initial order at
a buy-back price which is less than the wholesale price. A quantity flexibility
contract allows the firm to return a limited portion of his initial order for a
full refund of the wholesale price. Further, a buy-back contract delivers to the
retailer his initial order without an opportunity to increase the order. 'This
makes sense when the retailer doesn’t receive additional information between
the initial order and the delivery (as is assumed in §1.2). However, because in
Tsay’s model the retailer does receive a demand signal, the quantity flexibility
contract allows the retailer to increase his order somewhat. See Tsay and
Lovejoy (1995) for additional discussion on the implementation of quantity
flexibility contracts.

1.6.5 Internal Markets

Porteus and Whang (1991) consider a “supply chain” model with one owner,
one manufacturing manager and several product managers. The manufacturing
manager’s costly effort affects the realization of capacity, which is subject to
a random shock. The product managers’ costly effort affects the realization of
sales, which is also random. The owner wishes to maximize her profits, subject
to the conditions that she cannot choose the effort levels of her managers.
Further, she must offer them a sufliciently attractive contract to prevent them
from seeking employment at another firm. Porteus and Whang (1991) suggest
that the owner can achieve her objective through an internal market. The
product managers receive all revenues from the sale of their product and pay the
manufacturing manager the realized marginal value of capacity. (The marginal
value of capacity is decreasing in the realization of capacity.) In addition, the
product managers pay a fixed fee that equals their expected profits, so they are
indifferent between working for the owner and their best outside opportunity.
The manufacturing manager receives the expected marginal value of each unit
of capacity she delivers, but also pays a fixed franchise fee to the owner that
equals the manufacturing manager’s expected profits. Interestingly, the owner
loses money on average when operating this market: The average price the
marketing managers pay for capacity is less than the price the manufacturing
manager receives. Hence, the owner earns her profits through the franchise fees,
and operates the internal market merely to induce optimal behavior. Kouvelis
and Lariviere (1997) generalize the concept of an internal market, and apply it
to several other settings.
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1.6.6 The Beer Game

The Beer Game, Sterman (1989), is probably the most famous demonstration
that decentralized decision making can lead to poor supply chain performance.
There are several explanations for this result. Of the four players only the
retailer observes demand, so it is difficult for upstream locations to know how
much they should order. Indeed, optimal policies for this setting are not known,
even if all of the players were to observe demand. Furthermore, poor judgment
may also be a culprit: there is evidence that players forget to consider previously
ordered inventory when choosing order quantities, leading them to order too
much. Incentive conflicts are notably absent from this list of explanations: the
players are told to minimize total supply chain costs.

1.6.7 Vendor Managed Inventory

With Vendor Managed Inventory (VMI) a supplier assumes responsibility for
choosing a retailer’s stocking level. In exchange for control of supply chain
inventory, the supplier agrees to charge the retailer a constant wholesale price.
Since the supplier determines shipments to the retailers, VMI generally requires
electronic transmission of inventory and demand data from the retailer to the
supplier, e.g. Electronic Data Interchange (EDI). The grocery industry pro-
vides several examples of successful VMI implementation. (These systems are
also called Continuous Replenishment Programs, CRP, or Continuous Product
Replenishment programs, CPR.)

Clark and Hammond (1997) studied retailers that adopted VMI with the
Campbell Soup Company. The performance of these retailers was compared
with retailers that implemented EDI but did not transfer control of inventory to
Campbell Soup, i.e. they merely used EDI to submit orders electronically. They
found that the VMI retailers experienced substantially better performance gains
over the latter group, suggesting that transferring control provided significant
benefits. Cachon and Fisher (1997) also studied Campbell Soup’s implemen-
tation of VMI. However, they found that operating benefits could have been
achieved even if the retailers had maintained control of their own inventories.

Several models have been developed to study VMI. Cachon (1997) allows a
single supplier to choose operating policies for herself as well as all her retailers.
It is assumed that the supplier chooses policies to optimize her own preferences,
while leaving the retailers no worse off than they would be in the competitive
solution. It is found that the supplier does not always choose the optimal poli-
cies. Nevertheless, the supplier frequently chooses better policies for the supply
chain than the competitive solution. Hence, shifting control from one player to
another does not eliminate all incentive conflicts, but often can mitigate them.

Narayanan and Raman (1997) study VMI between a supplier and a retailer.
In addition to the supplier’s product, the retailer sells a close substitute from
another supplier. When a customer’s favorite product is unavailable, the cus-
tomer may switch to the other product which is always in stock. With VMI the
retailer allows the supplier to choose his stock level of the supplier’s product
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in exchange for a fixed transfer payment. They demonstrate that VMI does
not achieve the supply chain optimal profit. The problem is that the supplier
stocks too much of her product because she does not consider the revenue the
retailer earns when customers switch to the other product.

1.7 CONCLUSION

The literature on competitive supply chain inventory management recognizes
that supply chains are usually operated by independent agents with individual
preferences. Game theory is the methodological tool to determine how the
players will behave when they each seek to maximize their own welfare. The key
issues include whether a Nash equilibrium exists, whether there is a unique Nash
equilibrium and whether the optimal policies ever belong to the set of Nash
equilibria. It is frequently found that competitive and optimal behavior do not
coincide, in which case it is worthwhile to investigate coordination techniques.

Some coordination techniques are designed to manipulate the behavior of one
firm to the advantage of another. For example, buy-back and quantity discount
contracts can be used by a supplier to increase her profits at the expense of the
retailer’s profits. Other techniques are designed to make the optimal policies
incentive compatible, regardless of whether all of the players actually prefer
the optimal solution over the competitive solution. Most of the techniques
implement transfer payments between the players, but there is considerable
variation in the form of these payments (e.g. linear fees and subsidies, two-
part tariffs). It may also be possible to coordinate a supply chain by imposing
service constraints on the parties, by shifting control among the players (vendor
managed inventories), or by operating internal markets.
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