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We investigate a two-stage serial supply chain with stationary stochastic demand and
fixed transportation times. Inventory holding costs are charged at each stage, and each

stage may incur a consumer backorder penalty cost, e.g. the upper stage (the supplier) may
dislike backorders at the lower stage (the retailer). We consider two games. In both, the stages
independently choose base stock policies to minimize their costs. The games differ in how the
firms track their inventory levels (in one, the firms are committed to tracking echelon
inventory; in the other they track local inventory). We compare the policies chosen under this
competitive regime to those selected to minimize total supply chain costs, i.e., the optimal
solution. We show that the games (nearly always) have a unique Nash equilibrium, and it
differs from the optimal solution. Hence, competition reduces efficiency. Furthermore, the two
games’ equilibria are different, so the tracking method influences strategic behavior. We show
that the system optimal solution can be achieved as a Nash equilibrium using simple linear
transfer payments. The value of cooperation is context specific: In some settings competition
increases total cost by only a fraction of a percent, whereas in other settings the cost increase
is enormous. We also discuss Stackelberg equilibria.
(Supply Chain; Game Theory; Multiechelon Inventory; Incentive Contracts)

1. Introduction
How should a supply chain manage inventory? If the
members care only about overall system performance,
they should choose policies to minimize total costs,
i.e., the optimal solution. While this approach is ap-
pealing, it harbors an important weakness. Each mem-
ber may incur only a portion of the supply chain’s
costs, so the optimal solution may not minimize each
member’s own costs. For example, a supplier may care
more than a retailer about consumer backorders for
the supplier’s product, or the retailer’s cost to hold
inventory may be higher than the supplier’s. While the
firms may agree in principal to cooperate, each may
face a temptation to deviate from any agreement, to
reduce its own costs. Supposing each firm can antici-
pate these temptations, how will the firms behave?

Furthermore, to what extent will these temptations
lead to supply chain inefficiency?

This paper studies the difference between global/
cooperative and independent/competitive optimiza-
tion in a serial supply chain with one supplier and one
retailer. (We assume there are two independent firms,
but the model also applies to independent agents
within the same firm.) Consumer demand is stochas-
tic, but independent and stationary across periods.
There are inventory holding costs and consumer back-
order penalty costs, but no ordering costs. There is a
constant transportation time between stages, and the
supplier’s source has infinite capacity. Inventory is
tracked using either echelon inventory or local inventory.
(A firm’s local inventory is its on-hand inventory, and
its echelon inventory is its local inventory plus all
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inventory held lower in the supply chain.) In the
optimal solution, the firms choose base stock policies,
described in §3. These policies can be implemented by
tracking either echelon inventory or local inventory.

To model independent decision making we con-
sider two games, the Echelon Inventory (EI) game and
the Local Inventory (LI) game. In both games the firms
simultaneously choose their base stock levels. This is
their only strategic decision, and it cannot be modified
once it is announced. The supplier pays holding costs
for inventory in its possession or in-transit to the
retailer, and the retailer pays holding costs on units it
possesses. Both firms are concerned about consumer
backorders; the supplier pays a consumer backorder
penalty as does the retailer. This is an important
assumption, because it allows us to study how the
firms’ relative preferences influence their strategic
behavior and, in turn, the performance of the system.
(Section 3 discusses this modeling issue.)

The EI and LI games differ in only one way: In the
EI game both firms are committed to tracking echelon
inventory, whereas in the LI game both firms track
local inventory.

The firms in each game play a Nash equilibrium. (A
pair of strategies is a Nash equilibrium, if each firm
minimizes its own cost assuming the other player
chooses its equilibrium strategy.) Thus, each firm
makes an optimal decision given the behavior of the
other firm, and therefore neither firm has an incentive
to deviate unilaterally from the equilibrium.

We find that in each game there is (usually) a
unique Nash equilibrium. We compare the games’
equilibria to each other and to the optimal solution.
The optimal solution is typically not a Nash equilib-
rium, so competitive decision making degrades sup-
ply chain efficiency. We evaluate the magnitude of
this effect with an extensive numerical study.

Implementation of the cooperative solution requires
that the firms eliminate the incentives to deviate, i.e.,
they should modify their costs so that the optimal
solution becomes a Nash equilibrium. This goal can be
achieved by a contract that specifies linear transfer
payments based on easily verifiable performance mea-
sures like inventory and backorders. We develop a set

of linear contracts that meet this objective, and briefly
discuss other techniques for aligning incentives.

In these games neither player dominates the other,
and the firms simultaneously choose their strategies.
We also study Stackelberg versions of the games, in
which one dominant player chooses its strategy before
the other.

The next section reviews the related literature, and
§3 formulates the model. Section 4 describes the
system optimal solution, and §5 analyzes the two
games. Section 6 compares the games’ equilibria with
the optimal solution. Section 7 describes contracts that
make the system optimal solution a Nash equilibrium.
Section 8 discusses the numerical study. Section 9
analyzes the Stackelberg games, and §10 concludes.

2. Literature Review
The literature on supply chain inventory management
mostly assumes policies are set by a central decision
maker to optimize total supply chain performance.
Three exceptions are Lee and Whang (1996), Chen
(1997), and Porteus (1997).

In Lee and Whang (1996), the firms use echelon
stock policies and all backorder penalties are charged
to the lowest stage. The upper stage incurs holding
costs only. Therefore, with competitive selection of
policies, the upper stage carries no inventory, thereby
minimizing its own cost. They develop a nonlinear
transfer payment contract that induces each firm to
choose the system optimal base stock policies. Our
model differs from theirs on several dimensions. We
assume the upper stage (the supplier) may care about
consumer backorders, so it may carry inventory even
when inventory policies are chosen competitively.
Hence, the competitive decisions are nontrivial. We
distinguish between echelon inventory and local in-
ventory and investigate how these different methods
for tracking inventory influence strategic behavior.
Finally, we develop linear transfer payment contracts.
They consider a setup cost at the upper echelon, while
we do not. Porteus (1997) studies a model similar to
Lee and Whang’s model, but he proposes a different
coordination scheme, called responsibility tokens.

Chen (1997) studies a game similar to the popular
Beer Game (Sterman 1989), except that the demands in
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different periods are independent random variables
with a common distribution that is known to all
players. Unlike our players, his share the objective of
minimizing total system costs; they have no compet-
ing interests. He outlines an accounting scheme that
allows each player to optimize its own costs and yet
choose the system optimal solution. This scheme is
more complex than ours in some ways, though sim-
pler in others, as explained in §7. He also studies the
behavior of boundedly rational players, whereas we
only assume rational players.

Several other papers address related issues, yet their
models are significantly different. Lippman and Mc-
Cardle (1997) study competition between two or more
firms in a one-period setting, where a consumer may
switch among firms to find available inventory. Parlar
(1988) and Li (1992) also study the role of inventory in
the competition among retailers. In a multiechelon
model with multiple retailers, Muckstadt and Thomas
(1980), Hausman and Erkip (1994), and Axsäter (1996)
investigate a centralized control system that allows
each firm to optimize its own costs and still choose an
outcome desirable to the central planner. The behavior
of a central planner has also been investigated in
settings with moral hazard (e.g., Porteus and Whang
1991, Kouvelis and Lariviere 1996). Many papers in-
vestigate how a supplier can induce a retailer to
behave in a manner that is more favorable to the
supplier (e.g., Donohue 1996, Tsay 1996, Ha 1996, Lal
and Staelin 1984, Moses and Seshadri 1996, Narayanan
and Raman 1996, Pasternack 1985). Chen et al. (1997)
study competitive selection of inventory policies in a
multiechelon model with deterministic demand.

3. Model Description
Consider a one-product inventory system with one
supplier and one retailer. The supplier is Stage 2 and
the retailer is Stage 1. Time is divided into an infinite
number of discrete periods. Consumer demand at the
retailer is stochastic, independent across periods and
stationary. The following is the sequence of events
during a period: (1) shipments arrive at each stage; (2)
orders are submitted and shipments are released; (3)
consumer demand occurs; (4) holding and backorder
penalty costs are charged.

There is a lead time for shipments from the source to
the supplier, L 2, and from the supplier to the retailer,
L 1. Each firm may order any nonnegative amount in
each period. There is no fixed cost for placing or
processing an order. Each firm pays a constant price
per unit ordered, so there are no quantity discounts.

The supplier is charged holding cost h 2 per period
for each unit in its stock or enroute to the retailer. The
retailer’s holding cost is h 2 � h 1 per period for each
unit in its stock. Assume h 2 � 0 and h 1 � 0.

Unmet demands are backlogged, and all backorders
are ultimately filled. Both the retailer and the supplier
may incur costs when demand is backordered. The
retailer is charged �p for each backorder, and the
supplier (1 � �) p, 0 � � � 1. The parameter p is the
total system backorder cost, and � specifies how this
cost is divided among the firms. The parameter � is
exogenous.

These backorder costs have several possible interpre-
tations, all standard. They may represent the costs of
financing receivables, if customers pay only upon the
fulfillment of demands. (This requires a discounted-cost
model to represent exactly, but the approximation here
is standard in the average-cost context, analogous to the
treatment of inventory financing costs.) Alternatively,
they may be proxies for losses in customer good-will,
which in turn lead to long-run declines in demand. Such
costs need not affect the firms equally, which is why we
allow the flexibility to choose � � [0, 1]. Finally, they
provide a crude approximation to lost sales. (It would be
better, of course, to model lost sales directly, but that
introduces considerable analytical difficulties. Even the
optimal policy is unknown.)

In period t before demand define the following for
stage i: in-transit inventory, IT it; echelon inventory level,
IL it, is all inventory at stage i or lower in the system
minus consumer backorders; local inventory level, IL it,
is inventory at stage i minus backorders at stage i (the
supplier’s backorders are unfilled retailer orders);
echelon inventory position, IP it, IP it � IL it � IT it; and
local inventory position, IP it, IP it � IL it � IT it.

Each firm uses a base stock policy. Using an echelon
base stock level, each period the firm orders a suffi-
cient amount to raise its echelon inventory position
plus outstanding orders to that level. A firm’s local
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base stock level is similar, except the local inventory
position replaces the echelon inventory position. De-
fine s i as stage i’s echelon base stock level and s� i as its
local base stock level.

Let D � denote random total demand over � periods,
and �� denote mean total demand over � periods. Let
�� and �� be the density and distribution functions of
demand over � periods, respectively. We assume
� 1( x) is continuous, increasing, and differentiable for
x � 0, so the same is true of ��, � � 0. Furthermore,
�1(0) � 0, so positive demand occurs in each period.

Math notation follows: [ x]� � max{0, x}; [ x]�

� max{0, �x}; [a, b] is the closed interval from a to b;
and E[ x] is the expected value of x. A prime denotes
the derivative of a function of one variable.

4. System Optimal Solution
The system optimal solution minimizes the total aver-
age cost per period. Clark and Scarf (1960), Feder-
gruen and Zipkin (1984), and Chen and Zheng (1994)
demonstrate that an echelon base stock policy is
optimal in this setting. The optimal solution is found
by allocating costs to the firms in a particular way.
Then, each firm chooses a policy that minimizes its
cost function. This section briefly outlines this method.

Let Ĝ 1
o(IL 1t � D 1) equal the retailer’s charge in

period t, where

Ĝ 1
o�x� � h1�x	 � � �h2 � p��x	 �.

Also in period t, define G 1
o(IP 1t) as the retailer’s

expected charge in period t � L 1, where

G 1
o�y� � E�Ĝ 1

o�y 	 D L1�1�	.

Define s 1
o as the value of y that minimizes G 1

o( y):

� L1�1�s 1
o� �

h2 � p
h1 � h2 � p

. (1)

This is the retailer’s optimal base stock level. Define
the induced penalty function,

G� 1
o�y� � G 1

o�min
s 1
o, y�� 	 G 1

o�s 1
o�,

and define

Ĝ 2
o�y� � h2�y 	 � 1� � G� 1

o�y�.

In period t charge the supplier G 2
o(IP 2t), where

G 2
o�y� � E�Ĝ 2

o�y 	 D L2�	.

The supplier’s optimal echelon base stock level, s 2
o,

minimizes G 2
o�.

5. Echelon and Local Inventory
Games

In the Echelon Inventory (EI) game, the two stages are
independent firms or players. In the game’s only
move, the players simultaneously choose their strate-
gies, s i � 
 � [0, S], where s i equals player i’s
echelon base stock level, 
 is player i’s strategy space,
and S is a very large constant. (S is sufficiently large
that it never constrains the players.) A joint strategy s
is a pair (s 1, s 2). After their choices, the players
implement their policies over an infinite horizon. In
addition, all model parameters are common knowl-
edge.

In the Local Inventory (LI) game the supplier and
the retailer choose local base stock levels, s� 2, s� 1 � 
.
Again, strategies are chosen simultaneously, the play-
ers are committed to their strategies over an infinite
horizon, and all parameters are common knowledge.
The players know which game they are playing; the
choice between the EI and LI games is not one of their
decisions.

Define H i(s 1, s 2) as player i’s expected per-period
cost when players use echelon base stock levels (s 1,
s 2). When s 2 � s� 2 � s� 1 and s 1 � s� 1, the local base stock
pair (s� 1, s� 2) is equivalent to (s 1, s 2) in the sense that
H i(s 1, s 2) � H i(s� 1, s� 2 � s� 1). Since any echelon base
stock pair can be converted into an equivalent local
pair, there is no need to define distinct cost functions
with local arguments. We will frequently switch a pair
of base stock levels from one tracking method to
another to facilitate comparisons. Although there is
little operational distinction between echelon and local
base stock policies, we later show that they differ
strategically. (However, the operational equivalence
of echelon and local base stocks does depend on the
assumption of stationary demand. In a nonstationary
demand environment, it may not be possible to run
the system optimally with local base stock policies.)
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For the EI game the best reply mapping for firm i is
a set-valued relationship associating each strategy s j, j
� i, with a subset of 
 according to the following
rules:

r1�s2� � 
s1 � 
|H1�s1, s2� � min
x�


H1�x, s2��

r2�s1� � 
s2 � 
|H2�s1, s2� � min
x�


H2�s1, x��.

Likewise, for the LI game, the best reply mappings are

r� 1�s� 2� � 
s� 1 � 
|H1�s� 1, s� 2 � s� 1� � min
x�


H1�x, s� 2 � x��

r� 2�s� 1� � 
s� 2 � 
|H2�s� 1, s� 2 � s� 1� � min
x�


H2�s� 1, x � s� 1��.

A pure strategy Nash equilibrium is a pair of
echelon base stock levels, (s 1

e, s 2
e), in the EI game, or

local base stock levels, (s� 1
l , s� 2

l ), in the LI game, such
that each player chooses a best reply to the other
player’s equilibrium base stock level:

s 2
e � r2�s 1

e� s 1
e � r1�s 2

e�

s� 2
l � r� 2�s� 1

l � s� 1
l � r� 1�s� 2

l �.

(We do not consider mixed strategies. We generally
find a unique pure strategy equilibrium.)

5.1. Actual Cost Functions
In each period, the retailer is charged h 1 � h 2 per unit
held in inventory and �p per unit backordered. Define
Ĝ 1(IL 1t � D 1) as the sum of these costs in period t,

Ĝ1�y� � �h1 � h2��y	 � � �p�y	 �.

Define G 1(IP 1t) as the retailer’s expected cost in period
t � L 1,

G1�y� � E�Ĝ1�y 	 D L1�1�	

� �h1 � h2��y 	 � L1�1� � �h1 � h2 � �p�

 �
y

�

�x 	 y�� L1�1�x�dx.

Define s 1
a as the value that minimizes this function,

that is, the base stock level that minimizes the retail-

er’s costs, assuming retailer orders are shipped imme-
diately,

s 1
a � arg min

y�


G1�y�.

Differentiation verifies that G 1 is strictly convex, so s 1
a

is determined by G�1(s 1
a) � 0,

� L1�1�s 1
a� �

�p
h1 � h2 � �p

.

The retailer’s true expected cost depends on both its
own base stock as well as the supplier’s base stock. We
use a standard derivation. After the firms place their
orders in period t � L 2, the supplier’s echelon inven-
tory position equals s 2. After inventory arrives in
period t, but before period t demand, the supplier’s
echelon inventory level equals s 2 � D L2. Hence, E[s 2

� D L2] is the supply chain’s expected inventory level
(average supply chain inventory minus average back-
orders). When s 2 � D L2 � s 1, the supplier can
completely fill the retailer’s period t order, so IP 1t

� s 1. When s 2 � D L2 � s 1, the supplier cannot fill all
of the retailer’s order, and IP 1t � s 2 � D L2. Hence,

H1�s1, s2� � E�G1�min
s2 	 D L2, s1��	

� � L2�s2 	 s1�G1�s1�

� �
s2�s1

�

� L2�x�G1�s2 	 x�dx.

Define Ĝ 2(IL 1t � D 1) as the supplier’s actual period
t backorder cost,

Ĝ2�y� � �1 	 ��p�y	 �,

and G 2(IP 1t) as the supplier’s expected period t � L 1

backorder cost,

G2�y� � E�Ĝ2�y 	 D L1�1�	.

Define

Ĥ2�s1, x� � h2�
L1 � h2�x	 � � G2�s1 � min
x, 0��,

so

H2�s1, s2� � E�Ĥ2�s1, s2 	 s1 	 D L2�	
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� h2�
L1 � h2 �

0

s2�s1

�s2 	 s1 	 x�� L2�x�dx

� � L2�s2 	 s1�G2�s1�

� �
s2�s1

�

� L2�x�G2�s2 	 x�dx.

The first term above is the expected holding cost for
the units in-transit to the retailer (from Little’s Law),
the second term is the expected cost for inventory held
at the supplier and the final two terms are the ex-
pected backorder cost charged to the supplier.

We mentioned above the operational equivalence of
local and echelon base stock policies when s 1 � s� 1 and
s 2 � s� 1 � s� 2. However, the change in player i’s cost
due to a shift in player j’s strategy depends on the
inventory tracking method. For example, holding s� 2

constant, the supplier’s expected on-hand inventory is
independent of s� 1, but when s 2 stays constant, the
supplier’s inventory declines as s 1 increases. Further-
more, the total system inventory depends on s 2 only.
So holding s 2 fixed, the retailer’s s 1 only influences the
allocation of inventory between the supplier and the
retailer. However, holding s� 2 fixed, the retailer can
increase total system inventory by raising s� 1.

5.2. Echelon Inventory Game Equilibria with
Shared Backorder Costs

In this section, we assume that each firm incurs some
backorder cost, i.e., 0 � � � 1. (We subsequently
consider the extreme cases � � 0 and � � 1.) We begin
with some preliminary results on the players’ cost
functions and best reply mappings.

Lemma 1. Assuming � � 1, H 2(s 1, s 2) is strictly
convex in s 2, s 2 � 0, and H 1(s 1, s 2) is quasiconvex in s 1.

Proof. Fix D L2 and s 1. Consider the following
function of s 2:

h2�s2 	 s1 	 D L2� � � G2�min
s2 	 D L2, s1��.

Both terms are convex, while the second term is
strictly convex in the interval s 2 � [D L2, D L2 � s 1].
Now take the expectation over D L2. The first term,
h 2E[(s 2 � s 1 � D L2)�], is convex, and strictly convex

for s 2 � s 1. The second term, E[G 2(min{s 2 � D L2,
s 1})], is convex, and strictly convex when s 1 � 0 and
s 2 � 0. Hence, H 2(s 1, s 2) is strictly convex in s 2 � 0.

Consider H 1. When s 1 � s 2, H 1 is constant with
respect to s 1. Assume s 1 � s 2 and differentiate H 1,

�H1

�s1
� � L2�s2 	 s1�G�1�s1�.

When s 2 � s 1
a, H 1 is decreasing for s 1 � s 2 and

constant for s 1 � s 2. When s 2 � s 1
a, H 1 is decreasing

for s 1 � s 1
a, increasing for s 1

a � s 1 � s 2, and constant
for s 1 � s 2. Hence, H 1 is quasiconvex in s 1. �

The following lemma characterizes the supplier’s
best reply mapping.

Lemma 2. Assuming � � 1, r 2(s 1) is a function, r 2(s 1)
� s 1, and 0 � r�2(s 1) � 1.

Proof. From Lemma 1, H 2 is strictly convex in s 2,
so r 2(s 1) is a function (i.e., H 2 has a unique minimum)
and is determined by the first-order condition

�H2

�s2
� h2�

L2�s2 	 s1� � �
s2�s1

�

� L2�x�G�2�s2 	 x�dx � 0.

This condition cannot hold at s 2 � s 1 because then
� L2(s 2 � s 1) � 0 and G�2( y) � 0. Therefore, s 2 � r 2(s 1)
� s 1. Given s 2 � s 1, from the implicit function
theorem,

r�2�s1� � �� � 2H2

�s2�s1
� � 2H2

�s 2
2 �

�

�
� 2H2

�s2�s1

�
� 2H2

�s2�s1
� � s2�s1

� � L2�x�G �2�s2 	 x�dx
, (2)

where

� 2H2

�s 2
2 � �h2 	 G�2�s1��� L2�s2 	 s1�

� �
s2�s1

�

� L2�x�G �2�s2 	 x�dx,

� 2H2

�s2�s1
� �� L2�s2 	 s1��h2 	 G�2�s1��.
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The cross partial of H 2 is negative because G�2 � 0
� h 2 and � L2(s 2 � s 1) � 0 for s 2 � s 1. Since G �2 � 0,
0 � r�2(s 1) � 1. �

Although in the EI game the supplier does not
always fill the retailer’s orders immediately, the sup-
plier’s echelon base stock level has little influence over
the retailer’s strategy.

Lemma 3. For the EI game, the retailer’s best reply
mapping is

r1�s2� � � s 1
a s2 � s 1

a

�s2, S	 s2 � s 1
a .

Proof. Recall that G 1( y) is strictly convex and
minimized by y � s 1

a. Let x � D L2. When s 2 � x � s 1
a,

s 1 � s 2 minimizes G 1(min{s 2 � x, s 1}). When s 2 � x
� s 1

a, only s 1 � s 1
a minimizes G 1(min{s 2 � x, s 1}).

When s 2 � s 1
a, s 2 � D L2 � s 1

a, so r 1(s 2) � [s 2, S]. When
s 2 � s 1

a, only s 1 � s 1
a minimizes G 1(min{s 2 � x, s 1}) for

all x, so r 1(s 2) � s 1
a. �

The retailer’s best reply is not necessarily unique,
but there is only one Nash equilibrium.

Theorem 4. Assuming 0 � � � 1, in the EI game (s 1
e

� s 1
a, s 2

e � r 2(s 1
a)) is the unique Nash equilibrium.

Proof. From Theorem 1.2 in Fudenberg and Tirole
(1991), a pure strategy Nash equilibrium exists if (1)
each player’s strategy space is a nonempty, compact
convex subset of a Euclidean space, and (2) player i’s
cost function is continuous in s and quasiconvex in s i.
By the assumptions and Lemma 1, these conditions
are met, so there is at least one equilibrium. From
Lemma 2 in any equilibrium, (s 1

e, s 2
e), s 2

e � r 2(s 1
e) � s 1

e.
If s 2

e � s 1
a, Lemma 3 implies s 1

e � s 2
e, a contradiction.

Hence s 2
e � s 1

a, but from Lemma 3, this implies s 1
e � s 1

a.
Since r 2 is a function, there is only one s 2

e � r 2(s 1
a).

Therefore, the equilibrium is unique. �

Figures 1 and 2 plot the firms’ reaction functions
and the resulting equilibrium for two examples.

5.3. Local Inventory Game Equilibria with Shared
Backorder Costs

The analysis of the LI game also begins by character-
izing the cost functions and the best reply mappings.

Lemma 5. H 2(s� 1, s� 1 � s� 2) is strictly convex in s� 2 and
H 1(s� 1, s� 1 � s� 2) is strictly convex in s� 1.

Proof. Set s 2 � s� 1 � s� 2 and s 1 � s� 1. Differentiation
of H 2(s� 1, s� 1 � s� 2) reveals that

�H2�s� 1, s� 1 � s� 2�

�s� 2
�

�H2�s1, s2�

�s2
;

� 2H2�s� 1, s� 1 � s� 2�

�s� 2
2 �

� 2H2�s1, s2�

�s 2
2 . (3)

From Lemma 1, H 2(s 1, s 2) is strictly convex in s 2, so
H 2(s� 1, s� 1 � s� 2) is strictly convex in s� 2. Differentiate
H 1(s� 1, s� 1 � s� 2),

Figure 1 Reaction Functions, � � 0.30, p � 5, h 1 � h 2 � 0.5,
L 1 � L 2 � 1

Figure 2 Reaction Functions, � � 0.90, p � 5, h 1 � h 2 � 0.5,
L 1 � L 2 � 1
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�H1�s� 1, s� 1 � s� 2�

�s� 1
� � L2�s� 2�G�1�s� 1�

� �
s�2

�

� L2�x�G�1�s� 1 � s� 2 	 x�dx;

� 2H1�s� 1, s� 1 � s� 2�

�s� 1
2 � � L2�s� 2�G �1�s� 1�

� �
s�2

�

� L2�x�G �1�s� 1 � s� 2 	 x�dx.

(4)

Since G 1� is strictly convex, � 2H 1(s� 1, s� 1 � s� 2)/�s� 1
2

� 0, which means that H 1 is strictly convex in s� 1. �

The next two lemmas characterize the best reply
mappings.

Lemma 6. Assuming � � 1, r� 2(s 1) � s 1 � r 2(s 1);
r� 2(s 1) � 0; and �1 � r��2(s 1) � 0.

Proof. For the supplier r� 2(s 1) � s 1 � r 2(s 1),
because H 2(s� 1, s� 1 � s� 2) � H 2(s 1, s 2) whenever s 2 � s� 1

� s� 2 and s 1 � s� 1. From Lemma 2, r 2(s 1) � s 1, which
implies that r� 2(s 1) � 0. From the same lemma, 0
� r�2(s 1) � 1. Also r��2(s 1) � r�2(s 1) � 1, so �1 � r��2(s 1)
� 0. �

Lemma 7. Assuming � � 0, r� 1(s� 2) � s 1
a. When s� 2

� 0, �1 � r��1(s� 2) � 0; and when s� 2 � 0, r��1(s� 2) � �1.

Proof. The retailer’s best reply is determined by
the first order condition �H 1(s� 1, s� 1 � s� 2)/�s� 1 � 0, see
(4). When s� 1 � s 1

a, G�1(s� 1) � 0, and therefore �H 1(s� 1, s� 1

� s� 2)/�s� 1 � 0. Hence r� 1(s� 2) � s 1
a. From the implicit

function theorem

r��1�s� 2�

� �
� 2H1�s� 1, s� 1 � s� 2�

�s� 1�s� 2
� � 2H1�s� 1, s� 1 � s� 2�

�s� 1
2

� �
� s�2

� � L2�x�G �1�s� 1 � s� 2 	 x�dx

� L2�s� 2�G �1�s� 1� � � s�2
� � L2�x�G �1�s� 1 � s� 2 	 x�dx

.

Assume s� 2 � 0. Since � L2(s� 2)G �1(s� 1) � 0, the numer-
ator above is positive and the numerator equals the
second term in the denominator, �1 � r��1(s� 2) � 0.

When s� 2 � 0, � L2(s� 2)G �1(s� 1) � 0 and therefore r��1(s� 2)
� �1. �

When 0 � � � 1, there is a unique Nash equilibrium
in the LI game.

Theorem 8. Assuming 0 � � � 1, (s� 1
l , s� 2

l ) is the
unique Nash equilibrium.

Proof. Lemma 5 confirms the required conditions
for the existence of an equilibrium (in the proof of
Theorem 4). First, from Lemma 6, r� 2(s 1) � r 2(s 1) � s 1

� 0, so s� 2
l � 0. Now, suppose there are two equilibria,

(s� 1
l , s� 2

l ) and (s�*1, s�*2). Without loss of generality, assume
s� 2

l � s�*2. From Lemma 7, this implies that s�*1 � s� 1
l . From

the same lemma, r��1(s� 2) � �1, so s*2 � s�*1 � s�*2 � s� 1
l

� s� 2
l � s 2

l . But from Lemma 2, r 2 is increasing, so s*2
� s 2

l implies that s�*1 � s� 1
l , a contradiction. Hence, there

is a unique equilibrium. �

Figures 1 and 2 also display the reaction functions in
the LI game as well as the Nash equilibrium.

5.4. Equilibria Under Extreme Backorder Cost
Allocations

Suppose the retailer is charged all of the backorder
costs, i.e., � � 1. In this situation, the Nash equilibrium
in the EI game is no longer unique.

Theorem 9. For � � 1, in the EI game the Nash
equilibria are (s 1

e � [s 2
e, S], s 2

e � [0, s 1
a]).

Proof. The existence proof in Theorem 4 applies
even when � � 1, so a pure strategy equilibrium
exists. When � � 1, the supplier incurs no backorder
costs, only holding costs. Hence, the supplier picks s 2

� s 1, i.e., r 2(s 1) � [0, s 1]. Suppose (s*1, s*2) is an
equilibrium, where s*2 � s 1

a. From Lemma 3, r 1(s*2)
� s 1

a, but an equilibrium only occurs when s*2 � s*1, so
s*2 � s 1

a cannot be an equilibrium. Suppose s*2 � s 1
a.

From Lemma 3, r 1(s*2) � [s*2, S], so for any s*2 � s 1
a, (s*1

� [s*2, S], s*2) is an equilibrium. �

In the LI game there is a unique equilibrium even
when the retailer incurs all of the backorder cost.

Theorem 10. Assuming � � 1, in the LI game (s� 1
l

� r� 1(0), s� 2
l � 0) is the unique Nash equilibrium.

Proof. When � � 1 the supplier chooses s� 2 � 0.
Since r� 1(s� 2) is a function, r� 1(0) is unique. �

When the supplier incurs all backorder costs, there
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is a unique equilibrium in both games and they are
identical.

Theorem 11. Assuming � � 0, (s 1
e � 0, s 2

e � r 2(0))
is the unique Nash equilibrium in the EI game, and (s� 1

l

� s 1
e, s� 2

l � s 2
e � s� 1

l ) is the unique Nash equilibrium of the
LI game.

Proof. Since the retailer incurs no backorder cost
s 1

e � s� 1
l � 0. The supplier’s best reply mapping is a

function in either game, so s 2
e � r 2(0). Furthermore, s� 2

l

� s 2
e � s 1

e. �

6. Comparing Equilibria
This section compares the equilibria in the LI and EI
games to each other as well as to the optimal solution.
To facilitate these comparisons, convert the LI game
equilibrium, (s� 1

l , s� 2
l ), into the equivalent pair of eche-

lon base stock levels, (s 1
l , s 2

l ), where s 1
l � s� 1

l and s 2
l � s� 1

l

� s� 2
l .

6.1. Competitive Equilibria
The firms choose higher base stock levels in the LI
game than in the EI game.

Theorem 12. Assuming 0 � � � 1, the base stock
levels for both firms are higher in the LI game equilibrium
than in the EI game equilibrium, i.e., s 2

l � s 2
e and s 1

l � s 1
e.

Proof. The equilibrium in the EI game is (s 1
e � s 1

a,
s 2

e � r 2(s 1
e)). From Lemma 7, r� 1(s� 2) � s 1

a, which implies
that s 1

l � s 1
e � s 1

a. From Lemma 2, r 2(s 1) is increasing
in s 1, so s 2

l � r 2(s 1
l ) � r 2(s 1

a) � s 2
e. �

The retailer’s cost in the LI game equilibrium can be
more or less than in the EI game equilibrium. (The
numerical study confirms this.) However, the supplier
has a definite preference for the LI game.

Theorem 13. Assuming 0 � � � 1, the supplier’s
cost in the LI game equilibrium is lower than its cost in the
EI game equilibrium.

Proof. In the EI game the supplier chooses r 2(s 1).
In the LI game the supplier chooses r 2(s 1) � s 1 as its
local base stock level and the equivalent echelon base
stock level is r 2(s 1). Differentiate the supplier’s cost
function with respect to the retailer’s base stock level,
assuming the supplier chooses s 2 � r 2(s 1):

dH2

ds1
�

�H2

�s1
�

�H2

�s2

�r2�s1�

�s1
�

�H2

�s1

� �� L2�s2 	 s1��h2 	 G�2�s1��,

since �H 2(s 1, r 2(s 1))/�s 2 � 0. From Lemma 2, r 2(s 1)
� s 1, so � L2(s 2 � s 1) � 0, and G�2 � 0, so dH 2/ds 1

� 0. Thus, the supplier’s cost declines as s 1 increases.
Since s 1

l � s 1
e, H 2 is lower at s 1

l . �

Why does the supplier prefer the LI game equilib-
rium? The supplier always prefers the retailer to
increase its base stock, thereby increasing the retailer’s
inventory and decreasing the supplier’s backorder
costs. The retailer always chooses a lower base stock in
the EI game than it does in the LI game, hence the
supplier is always better off in the LI game.

6.2. Competitive Equilibria and the Optimal
Solution

In the EI game the retailer’s base stock level is lower
than in the optimal solution.

Theorem 14. In an EI game equilibrium, the retailer’s
base stock level is lower than in the optimal solution.

Proof. Note that Ĝ 1
o�( x) � Ĝ�1( x), for all x. Hence,

G 1
o�( y) � G�1( y), for all y. Since both G 1

o�( y) and G�1( y)
are increasing in y, s 1

o � s 1
a � s 1

e. �

In the LI game either s 1
l � s 1

o or s 1
l � s 1

o is possible.
(In Figure 1 the retailer chooses s 1

l � s 1
o, but in Figure

2 s 1
l � s 1

o.) However, when backorder costs are
charged to the supplier, the supplier’s base stock level
is lower than in the system optimal solution in both
games.

Theorem 15. Assuming � � 1, the supplier’s base
stock level in both the LI and the EI equilibria is lower than
in the system optimal solution.

Proof. In any equilibrium s 2
l � s 2

e, so it is sufficient
to show that s 2

o � s 2
l . For x � �s 1,

�Ĥ2

�x
� G�2�s1 � x� � ��1 	 ��p

and

Ĝ 2
o��x� � h2 � G� 1

o��x� � h2 � G 1
o��x�

� �p.
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For �s 1 � x � 0

�Ĥ2

�x
� G�2�s1 � x� � ���1 	 ��p, 0	

and again Ĝ 2
o�( x) � �p. For x � 0, �Ĥ 2/� x � h 2 and

Ĝ 2
o��x� � h2 � G 1

o��x� � h2,

with strict inequality for x � s 1
o. So in all cases Ĝ 2

o�( x)
� �Ĥ 2/� x, with strict inequality for �s 1 � x � s 1

o.
Therefore, G 2

o�( x) � �H 2/� x, with strict inequality for
s 2 � s 1. So, s 2

o � s 2
l . �

Recall that the supplier’s echelon base stock deter-
mines the supply chain’s average inventory level.
From Theorem 15 it follows that in either game’s
equilibrium the supply chain’s average inventory
level will be lower than in the optimal solution,
suggesting that competition will also tend to lower the
supply chain’s average inventory. The numerical
study confirms this observation.

When the supplier incurs no backorder costs, the
supplier’s base stock level is no greater than in the
system optimal solution.

Theorem 16. Assuming � � 1, s 2
e � s 2

o, and s 2
l � s 2

o.

Proof. In the EI game s 2
e � s 1

e � s 1
a � s 1

o � s 2
o,

hence s 2
e � s 2

o. When � � 1, in the LI game s 2
l � s 1

l , so
the proof of Theorem 15 demonstrates s 2

l � s 2
o. �

Theorem 17. Assuming � � 1, the system optimal
solution is not a Nash equilibrium.

Proof. From Theorem 15, s 2
e � s 2

l � s 2
o, so the

optimal solution is not a Nash equilibrium in either
game. �

When the supplier incurs no backorder costs, the
system optimal solution can be a Nash equilibrium
under a very special condition.

Theorem 18. Assuming � � 1, the system optimal
solution is a Nash equilibrium in the LI game only when

� L2�L1�1�s 1
o� �

p
h1 � h2 � p

.

Proof. When � � 1, the LI game Nash equilibrium
is (s 1

l , s 2
l � s 1

l ). Solving for s 1
l ,

� L2�L1�1�s 1
l � �

p
h1 � h2 � p

.

It is possible that s 1
l � s 1

o because � L2 �L1 �1 stochasti-
cally dominates � L1 �1 and p/(h 1 � h 2 � p) � (h 2

� p)/(h 1 � h 2 � p). For the supplier s 2
o � s 1

o when G 2
o�

(s 2
o � s 1

o) � 0. This occurs precisely when

� L2�L1�1�s 1
o� �

p
h1 � h2 � p

.

In that case, s 2
o � s 1

o � s 1
l � s 2

l . �

7. Cooperative Inventory Policies
According to Theorem 17, the optimal solution is
virtually never a Nash equilibrium. Hence, the firms
can lower total costs by acting cooperatively.

There are several methods that enable the firms to
minimize total costs and still remain confident that the
other firm will not deviate from this agreement. For
instance, the firms could contract to choose (s 1

o, s 2
o) as

their base stock levels. But, since each firm has an
incentive to deviate from this contract (because it is
not a Nash equilibrium), the contract must also specify
a penalty for deviations. Such stipulations are hard to
enforce.

Alternatively, the firms could write a contract that
specifies transfer payments which eliminate incentives
to deviate from the optimal solution. There are several
schemes to achieve this goal: a per period fee for the
supplier’s backorder; a per unit fee for each unit the
supplier does not ship immediately; a per unit fee per
consumer backorder; or a subsidy for each unit of
inventory in the system. (Nonlinear payment sched-
ules, as in Lee and Whang (1996), could also be
considered, but these are necessarily more cumber-
some. For instance, the induced penalty function G� 1

o is
nonlinear.) Transfer payments can also be imposed on
the retailer, e.g. a subsidy on retailer inventories, or a
subsidy on backorders.

Payments could also be based on the inventory and
backorder levels that would have occurred had the
supplier performed certain actions. Chen (1997) uses
this approach. Define accounting inventory and ac-
counting backorders as the inventory and backorder
levels, assuming the supplier fills retailer orders im-
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mediately. Suppose the supplier pays all of the retail-
er’s actual costs, and the supplier charges the retailer
h 1 per unit of accounting inventory and h 2 � p per
accounting backorder. Then, the retailer will choose
s 1

o. Since the supplier incurs all actual costs, and the
retailer chooses s 1

o, the supplier chooses s 2
o. With this

scheme, the retailer’s decision is independent of the
supplier’s; there is no strategic interaction between the
firms. However, this approach creates a challenging
accounting problem.

We study linear transfer payments based on actual
inventory and backorder levels. While our approach
avoids the problem of tracking accounting inventory
and backorders, Chen’s method uses only cost param-
eters. Ours also requires a demand parameter. Thus,
his technique may be easier to implement in some
situations, ours in others.

7.1. Linear Contracts
Suppose the firms track local inventory and they
adopt a transfer payment contract with constant pa-
rameters (1, �2, �1). This contract specifies that the
period t transfer payment from the supplier to the
retailer is

1I1t � �2B2t � �1B1t,

where I 1t is the retailer’s on-hand inventory, and B it is
stage i’s backorders, all measured at the end of the
period. There are no a priori sign restrictions on these
parameters, e.g. 1 � 0 represents a holding cost
subsidy to the retailer and 1 � 0 represents a holding
fee. (We later impose some restrictions on the param-
eters.) We also assume the optimal solution is com-
mon knowledge.

Define T 1(IP 1t) as the expected transfer payment in
period t � L 1 due to retailer inventory and back-
orders, where

T1�y� � E�1�y 	 D L1�1	 � � �1�y 	 D L1�1	 �	

� 1�y 	 � L1�1�

� �1 � �1� �
y

�

�x 	 y�� L1�1�x�dx.

Define T(s� 1, s� 2) as the expected per period transfer
payment from the supplier to the retailer,

T�s� 1, s� 2� � E��2�s� 2 	 D L2	 �

� T1�s� 1 � min
0, s� 2 	 D L2��	

� �2 �
s�2

�

� L2�x��x 	 s� 2�dx � � L2�s� 2�T1�s� 1�

� �
s�2

�

� L2�x�T1�s� 1 � s� 2 	 x�dx.

Note that s� 1 influences the retailer inventory and
backorders, but not the supplier’s backorders. Let
H i

c(s� 1, s� 1 � s� 2) be player i’s costs after accounting for
the transfer payment,

H 1
c�s� 1, s� 1 � s� 2� � H1�s� 1, s� 1 � s� 2� 	 T�s� 1, s� 2�,

H 2
c�s� 1, s� 1 � s� 2� � H2�s� 1, s� 1 � s� 2� � T�s� 1, s� 2�.

We wish to determine the set of contracts, (1, �2, �1),
such that (s� 1

c, s� 2
c) is a Nash equilibrium for the cost

functions H i
c(s� 1, s� 1 � s� 2), where s� 1

c � s 1
o, and s� 1

c � s� 2
c

� s 2
o. With these contracts the firms can choose (s� 1

c, s� 2
c),

thereby minimizing total costs, and also be assured
that no player has an incentive to deviate.

To find the desired set of contracts, first assume that
H i

c is strictly convex in s� i, given that player j chooses
s� j

c, j � i. Then determine the contracts in which s� i
c

satisfies player i’s first order condition, thereby mini-
mizing player i’s cost. Finally, determine the subset of
these contracts that also satisfy the original strict
convexity assumption.

The following are the first order conditions:

�H 1
c

�s� 1
� 0 � � L2�s� 2��G�1�s� 1� 	 T�1�s� 1��

� �
s�2

�

� L2�x��G�1�s� 1 � s� 2 	 x�

	 T�1�s� 1 � s� 2 	 x�	dx; (5)

�H 2
c

�s� 2
� 0 � ��2 � �h2 � �2��

L2�s� 2�

� �
s�2

�

� L2�x��G�2�s� 1 � s� 2 	 x�
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� T�1�s� 1 � s� 2 	 x�	dx. (6)

Define � 2 � � L2(s 2
o � s 1

o). (This is the supplier’s
in-stock probability, essentially its fill rate.) Further-
more, the supplier’s first order condition in the opti-
mal solution is

0 � �p � �p � h2��
L2�s 2

o 	 s 1
o� � �h1 � h2 � p�

 �
s 2

o�s 1
o

�

� L2�x�� L1�1�s 2
o 	 x�dx,

or,

�
s 2

o�s 1
o

�

� L2�x�� L1�1�s 2
o 	 x�dx �

p 	 �p � h2��2

h1 � h2 � p
. (7)

Using (7), (5), and (6) yield the following two equa-
tions in three unknowns,

�1 	 ��p � � p
h1 � h2

� 1 	 �1, (8)

h2 � � h2

h1 � h2
� 1 � �1 	 �2

�2
��2. (9)

It remains to ensure that the costs functions are
indeed strictly convex.

Theorem 19. When the firms choose ( 1, � 2, � 1) to
satisfy (8) and (9), and the following additional restrictions
apply

(i) h1 � h2 � 1 � 0

(ii) �2 � 0

(iii) �p � �1 � ��1 	 ��p,

then the optimal policy (s� 1
c, s� 2

c) is a Nash equilibrium.

Proof. When the following second order condi-
tions are satisfied, H i

c is strictly convex in s� i, assuming
s� j � s� j

c, j � i:

� 2H 1
c

�s� 1
2 � � L2�s� 2��G �1�s� 1� 	 T �1�s� 1��

� �
s�2

�

� L2�x��G �1�s� 1 � s� 2 	 x�

	 T �1�s� 1 � s� 2 	 x��dx � 0;

� 2H 2
c

�s� 2
2 � �h2 � �2�� L2�s� 2�

� �
s�2

�

� L2�x��G �2�s� 1 � s� 2 	 x�

� T �1�s� 1 � s� 2 	 x��dx � 0.

The first inequality reduces to

h1 � h2 � �p 	 1 	 �1 � 0.

Substituting (8) yields  1 � h 1 � h 2 and � 1 � �p. For
the supplier, sufficient conditions are

�1 	 ��p � 1 � �1 � 0;

h2 � �2 � �1 	 ��p � �1

	 ��1 	 ��p � 1 � �1��
L1�1�s 1

o� � 0.

Combining the first inequality with (8) yields 1 � 0
and � 1 � �(1 � �) p. The second inequality, along
with (8) and (9), yields �2 � 0. �

These are quite reasonable conditions: The first
requires that the retailer’s inventory subsidy not elim-
inate retailer holding costs; the second stipulates that
the supplier be penalized for its backorders; and the
third states that the supplier should not fully reim-
burse the retailer’s backorder costs, and the retailer
should not overcompensate the supplier’s backorder
costs.

To help interpret these results, consider the three
extreme contracts where one of the parameters is set to
zero:

i) 1 � 0 �2 �
�2

1 	 �2
h2 �1 � ��1 	 ��p

ii) 1 � h1 � h2 �2 � 0 �1 � �p

iii) 1 � �1 	 ���h1 � h2� �2 �
�2

1 	 �2
�h2 �1 � 0.

(Of these three contracts, the second does not meet the
conditions in Theorem 19, because the supplier fully
compensates the retailer for all of its costs. The retail-
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er’s incentive to choose the optimal policy is weak: s 1
o

is a Nash equilibrium strategy, but any s� 1 is too.)
With the first contract the retailer fully reimburses

the supplier for the supplier’s consumer backorder
penalty. However, the supplier still carries inventory
because it pays a penalty for its local backorders. With
the third contract the supplier subsidizes the retailer’s
holding costs, but not fully (provided � � 0). In
addition, the supplier is penalized for its backorders,
but less than in the first contract. When the retailer
incurs all backorder costs (i.e., � � 1), only a supplier
backorder penalty is required, � 2 � � 2h 2/(1 � � 2).

Incidentally, (8) and (9) can be written

�p 	 �1

�h1 � h2��1 	
1

h1 � h2
� � ��p 	 �1�

�
p

h1 � h2 � p

�2

h2�1 	
1

h1 � h2
� � �2

� �2.

Consider the first identity. The quantity �p � � 1 is the
retailer’s backorder cost, and its holding cost, includ-
ing transfer payments, is

�h1 � h2��1 	
1

h1 � h2
� ,

which is written more simply as h 1 � h 2 �  1. So the
left-hand side is the retailer’s critical ratio. The right-
hand side is the critical ratio for the total system costs
controlled by the retailer. These ratios must be iden-
tical to induce the retailer to minimize total system
costs. The second identity specifies a critical ratio for
the supplier. �2 is its (local) backorder cost. The
holding cost h 2 is multiplied by the factor (1 �  1/(h 1

� h 2)), which is the fraction of actual holding costs
paid by the retailer, taking the transfer payment into
account. Thus, this rule effectively reduces both
stages’ holding costs by the same fraction.

7.2. Additional Contracting Issues
Theorem 19 details the contracts that make the opti-
mal solution a Nash equilibrium, but this does not
imply a unique equilibrium. Nevertheless, even if there
were additional Nash equilibria, the one correspond-

ing to the optimal solution Pareto dominates any
other. Hence, the players can coordinate on this equi-
librium. (There is experimental evidence that players
coordinate on a Pareto dominant equilibrium when
they are able to converse before playing the game, e.g.
Cooper et al. 1989, Cachon and Camerer 1996.)

Although total costs decline when the firms coordi-
nate, one firm’s cost may increase. This firm will be
unwilling to participate in the contract unless it re-
ceives an additional transfer payment. To maintain the
strategic balance of the contract, this payment should
be independent of all other costs and actions. For
example, the firms could transfer a fixed fee each
period. Alternatively, one could seek a contract (1, �2,
�1) such that each firm’s cost is no greater than in the
original Nash equilibrium.

Finally, this analysis assumes the firms use local
base stock levels. In this context local policies have
several advantages over echelon policies. Recall that s� 1

has no influence on � 2B 2t, the supplier’s backorder
penalty, when firms use local base stock levels. How-
ever, with echelon stock base stock levels, s 1 does
influence � 2B 2t, holding s 2 constant. This can create a
perverse incentive. Suppose �2 is large. By increasing
s 1 � s 2, the retailer can make B 2t arbitrarily large
(assuming S, the limit on s 1, is large too). The � 2B 2t

transfer payment could easily dominate the additional
retailer inventory cost. (Furthermore, once s 1 � s 2, the
retailer can increase s 1 without increasing its inven-
tory.) There is a solution to this problem. The transfer
payment could assume that the retailer chooses s 1 � s 1

o.
Hence, the retailer would receive no additional benefit
by raising s 1 above s 1

o. Clearly this increases the
complexity of the contract. Local measurements avoid
this problem altogether.

8. Numerical Study
The system optimal solution is virtually never a Nash
equilibrium, but how large is the difference between
their costs? To answer this question, we conducted a
numerical study.

One period demand is normally distributed with
mean 1 and standard deviation 1/4. (There is only a
tiny probability of negative demand.) The remaining
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parameters are chosen from the 2625 possible combi-
nations of the following:

� � 
0, 0.1, 0.3, 0.5, 0.7, 0.9, 1� p � 
1, 5, 25�

L1 � 
1, 2, 4, 8, 16� h1 � 
0.1, 0.3, 0.5, 0.7, 0.9�

L2 � 
1, 2, 4, 8, 16� h2 � 1 	 h1.

Note that h 1 � h 2 � 1 in all of the problems; therefore,
the retailer holding cost is constant.

For each problem three solutions are evaluated: (1)
the system optimal solution; (2) the Nash equilibrium
of the EI game; and (3) the Nash equilibrium of the LI
game. (These data can be obtained from http://
www.duke.edu/˜ gpc/.) (When � � 1 there are mul-
tiple Nash equilibria in the EI game; we choose the one
with the largest s 1.)

Table 1 summarizes the percentage increase in cost
of the Nash equilibrium over the system optimal
solution. We call this percentage the competition pen-
alty. Several results are evident from the table. First,
when the players care about backorder costs equally
(i.e., � � 0.5), the Nash equilibrium is close to the
system optimal solution: In the EI and LI games the
median competition penalty is 6% and 3%, respec-
tively, and the maximum is 13% and 8%, respectively.

The competition penalty increases as the back-
order cost allocation becomes more asymmetric. In
the EI game the median percentage is 84% when the
retailer incurs no backorder penalty (i.e., � � 0) and
483% when the retailer incurs all of the backorder
penalty (i.e., � � 1). The competitive outcome is
poor when � � 0 because the retailer chooses s 1 � s� 1

� 0, so all consumer demands are backordered.
When � � 1, the competition penalty is substantial
because the supplier refuses to carry inventory,
thereby hampering the retailer’s effort to mitigate
consumer backorders.

The LI game’s response to changes in � is slightly
different. The performance of the competitive solution
deteriorates rapidly as the retailer incurs lower back-
order cost (i.e., � declines). However, as the retailer
incurs higher backorder cost (i.e., � increases), the
maximum competition penalty increases rapidly,
while the minimum and median penalties do not.
Consider the extreme case where all backorder costs
are allocated to the retailer. In the competitive solution
the supplier carries no inventory. Nevertheless, this
behavior is not always harmful. Look at Figure 3,
which displays the percentage increase in total system
costs as a function of

Table 1 The Competition Penalty Under Different Allocations of Backorder Costs

�

Competition Penalty: Percentage Increase in Cost of the Nash Equilibrium Over the
System Optimal Solution

Minimum 5th Percentile Median 95th Percentile Maximum

0 107% 117% 804% 5,930% 10,939%
0.1 5% 9% 41% 97% 120%

Echelon 0.3 2% 4% 12% 21% 27%
Inventory 0.5 1% 2% 6% 11% 13%

Game 0.7 1% 1% 4% 12% 19%
0.9 1% 1% 8% 40% 66%
1 2% 15% 483% 9,271% 34,493%

0 107% 117% 804% 5,930% 10,939%
0.1 5% 8% 37% 96% 119%

Local 0.3 2% 3% 9% 19% 26%
Inventory 0.5 1% 1% 3% 6% 8%

Game 0.7 0% 0% 1% 4% 9%
0.9 0% 0% 1% 17% 45%
1 0% 0% 1% 34% 116%
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L1

L1 � L2
�

h2

h1 � h2
. (10)

What does (10) measure? When L 1/(L 1 � L 2) is large,
the supplier’s lead time is a small fraction of the total
system lead time, so the supplier’s decisions have a
small impact. When h 2/(h 1 � h 2) is large, there is little
benefit to holding inventory at the supplier rather than
the retailer. As (10) increases, the supplier’s self serv-
ing behavior does little damage, therefore the compet-
itive solution’s performance is nearly as good as the
optimal solution’s. Overall, the competition penalty is
high when one of the firms has a substantial influence
over a major portion of total system costs, but little
incentive to help manage that cost.

Table 2 presents data on the percentage change in
average supply chain inventory in the two equilibria
relative to the optimal solution. Average inventories in
the competitive solutions are generally lower than in
the optimal solution, except in some cases when the
retailer cares little about backorders (� is small).
Nevertheless, competition raises supply chain inven-
tory by at most 4%.

9. One Dominant Player
In the LI and EI games the players choose their
policies simultaneously. In the Stackelberg version of
either game one of the players chooses its base stock
level first, announces its choice to the other player, and
then the other player chooses its base stock level. As in
the EI and LI games, a player is committed to its
choice, i.e., the first player cannot change its decision
after observing the second player’s. We seek sub-game
perfect equilibria, i.e., the second player chooses an
optimal response to the first player’s strategy and the
first player (correctly) anticipates this behavior. The
Stackelberg version represents a situation where one
player is the dominant member of the supply chain
(e.g., WalMart, Intel.)

9.1. Supplier Stackelberg Games
The Stackelberg game with the supplier leading is
called either the Echelon Inventory Supplier game
(EIS) or the Local Inventory Supplier game (LIS),
depending on the inventory tracking method. In the
EIS (LIS) game the supplier chooses s 2 (s� 2) to mini-
mize its cost, given that it anticipates the retailer will
choose r 1(s 2) (r� 1(s 2)). According to the next theorem,
there is little difference between the EIS and EI games.

Theorem 20. When � � 1, in the EIS game {s 1
a,

r 2(s 1
a)} is the unique Stackelberg equilibrium. When � � 1,

{s 1 � [s 2, S], s 2 � [0, s 1
a]} are the Stackelberg equilibria.

Proof. The proof of Theorem 13 shows that if the
supplier could choose s 1, it would choose s 1 as large as
possible. When � � 1, r 1(s 2) � s 1

a, so the supplier
should anticipate s 1 � s 1

a. Therefore, the supplier
chooses s 2 � r 2(s 1

a), and the retailer chooses s 1 � s 1
a.

When � � 1, the supplier wishes to carry no inventory,
so it chooses s 2 � [0, s 1

a], since then the retailer will
choose s 1 � s 2. The supplier cannot choose s 2 � s 1

a,
because then the retailer chooses s 1 � s 1

a, leaving the
supplier with some expected inventory. �

In the LIS game the supplier anticipates that the
retailer will choose r� 1(s� 2). Hence, the supplier’s cost is

H2�s� 2� �
def

H2�r� 1�s� 2�, r� 1�s� 2� � s� 2�

� E�Ĥ2�r� 1�s� 2�, s� 2 	 D L2�	.

Since this is continuous in s� 2, there exists s�*2 such that

Figure 3 Competition Penalty When the Retailer Incurs All Backorder
Costs (� � 1)
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H 2(s�*2) � infs� 2 �[0,S] H 2(s� 2). Hence there exists a Stack-
elberg equilibrium. Let {s� 1

ls, s� 2
ls} be an equilibrium, and

let {s 1
ls, s 2

ls} be the equivalent pair of echelon base stock
levels, i.e., s 1

ls � s� 1
ls and s 2

ls � s� 1
ls � s� 2

ls.

Theorem 21. When � � 1, in the LIS game the
supplier chooses a base stock level lower than in the LI game,
i.e., s� 2

ls � s� 2
l and s 2

ls � s 2
l .

Proof. Assuming s� 1 � r� 1(s� 2), differentiate the
supplier’s cost function with respect to s� 2

dH2

ds� 2
�

�H2

�s� 1
r��1�s� 2� �

�H2

�s� 2

�� � L2�s� 2�G�2�s� 1� � �
s�2

�

� L2�x�G�2�s� 2 � s� 1 	 x�dx�
� r��1�s� 2� �

�H2

�s� 2
.

From Lemma 6, r��1(s� 2) � 0. When � � 1, G�2( y) � 0.
So (�H 2/�s� 1)r��1(s� 2) � 0. When s� 2 � r� 2(s� 1), �H 2/�s� 2

� 0. Hence, for s� 2 � r� 2(s� 1), dH 2/ds� 2 � 0. Therefore,
s� 2

ls � r� 2(s� 1
l ) � s� 2

l . Since r� 1(s� 2) � s� 2 is decreasing in s� 2,
s� 2

ls � r� 1(s� 2
ls) � s 2

ls � s 2
l � s� 2

l � r� 1(s� 2
l ). �

9.2. Retailer Stackelberg Games
In the Echelon Inventory Retailer (EIR) and Local Inven-
tory Retailer (LIR) games the retailer anticipates the
supplier will choose r2(s1) and r�2(s�1), respectively. Since
r2(s1) � s�1 � r2(s�1) when s1 � s�1, the retailer’s cost for any
base stock level is the same in the two games. Hence,
when the retailer is dominant, it is immaterial whether
the firms use echelon or local inventory measurements.
Existence of an equilibrium is straightforward.

Theorem 22. In the EIR and LIR games the retailer
chooses a base stock level that is higher than in the EI game
(s 1

e), but lower than in the LI game (s 1
l ).

Proof. The retailer anticipates that the supplier will
choose r2(s1). Differentiate the retailer’s cost function:

dH1�s1, r2�s1��

ds1
�

�H1�s1, r2�s1��

�s1

�
�H1�s1, r2�s1��

�s2
r�2�s1�

� � L2�s2 	 s1�G�1�s1�

� r�2�s1� �
s2�s1

�

� L2�x�G�1�s2 	 x�.

Table 2 Change in Supply Chain Inventory

�

Percentage Change in Average Supply Chain Inventory in the Nash Equilibrium Relative
to the Optimal Solution

Minimum 5th Percentile Median 95th Percentile Maximum

0 �18% �12% �2% 2% 4%
0.1 �10% �7% �3% 1% 3%

Echelon 0.3 �8% �5% �2% 0% 0%
Inventory 0.5 �13% �9% �3% �1% 0%

Game 0.7 �22% �15% �4% �1% 0%
0.9 �37% �27% �7% �1% �1%
1 �73% �56% �17% �3% �2%

0 �18% �12% �2% 2% 4%
0.1 �10% �7% �2% 1% 3%

Local 0.3 �7% �5% �2% 0% 1%
Inventory 0.5 �10% �7% �2% �1% 0%

Game 0.7 �18% �11% �2% �1% 0%
0.9 �34% �15% �2% 0% 0%
1 �38% �16% �1% 0% 0%
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Since r�2(s 1) � 0, the above is negative for all s 1 � s 1
a

� s 1
e, hence the optimal s 1 is larger than s 1

e. Since r�2(s 1)
� 1, and in the LI game equilibrium,

�H1�s� 1
l , s� 1

l � s� 2�

�s� 1
� � L2�s� 2�G�1�s� 1

l �

� �
s�2

�

� L2�x�G�1�s� 2 � s� 1
l 	 x� � 0,

it holds that

dH1�s 1
l , r2�s 1

l ��

ds1
� 0.

Hence the retailer chooses a base stock level lower
than s 1

l . �

10. Conclusion
When both players care about consumer backorders,
the supply chain optimal solution is never a Nash
equilibrium, so competitive selection of inventory
policies decreases efficiency. Although the players
may agree to cooperate and choose supply chain
optimal policies, at least one of them has a private
incentive to deviate from the agreement. Furthermore,
there is a unique Nash equilibrium in either the EI
game or the LI game, and these equilibria differ.
Hence, while there is little operational distinction
between tracking echelon inventory or local inventory
(since we assume stationary demand), there is a sig-
nificant strategic difference. The supplier prefers local
inventory, but the retailer’s preference depends on the
parameters of the game.

In the games we study, competition generally lowers
supply chain inventory relative to the optimal solution.
In other words, if firms cooperate and choose the opti-
mal solution, they will tend to increase inventory. This is
a surprising result, since many authors suggest the
opposite (e.g., Buzzell and Ortmeyer 1995, Kumar 1996).
The rationale is that inventory is a public good: Each
firm benefits from more inventory, but each wants the
other to invest in it. It is well known that participants
tend to underinvest in the provision of public goods (see
Kreps 1990). In other settings, cooperation may lead to
lower inventory. For instance, cooperative firms could

share sales information, and this might enable better
policies than those available to competitive firms. Nev-
ertheless, inventory remains a public good even here; we
suspect there is always a strong tendency for competitive
firms to choose lower inventory than in the optimal
solution.

Should the players wish to choose the optimal
solution cooperatively, we characterize a set of simple
linear contracts which eliminate each player’s incen-
tive to deviate. These contracts are based on actual
inventories and backorders. Implementation of these
contracts will not provide dramatic improvements
when the players have similar preferences for reduc-
ing consumer backorders. We draw this conclusion
from a sample of 2625 problems. For each problem we
measured the competition penalty, the percentage in-
crease in total cost of the Nash equilibrium over the
optimal solution. When the players view consumer
backorders as equally costly (i.e., � � 0.5), the median
competition penalty in the EI game is only 6% and in
the LI game it is 3%. However, when the players have
divergent backorder costs, the competition penalty
can be huge. For instance, when the supplier is indif-
ferent to consumer backorders, the median competi-
tion penalty in the EI game is 483%. These results
highlight an important lesson for managers: While the
lack of cooperation/coordination implies the system
will not perform at its best efficiency, the magnitude of
the efficiency loss is context specific.1

1 The authors would like to thank the seminar participants at
Rochester University, the University of Michigan, the University of
Chicago, and the 1997 Multi-Echelon Inventory Conference at New
York University. The helpful comments of Eric Anderson, Marty
Lariviere, the referees, and the associate editor are also graciously
acknowledged.
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Axsäter, S. 1996. A framework for decentralized multi-echelon

inventory control. Working Paper, Lund University, Lund,
Sweden.

Buzzell, R., G. Ortmeyer. 1995. Chanel partnerships streamline
distribution. Sloan Management Rev. 36.

Cachon, G., C. Camerer. 1996. Loss-avoidance and forward induc-
tion in experimental coordination games. Quart. J. Econom.
165–194.

Chen, F. 1997. Decentralized supply chains subject to information
delays. To appear in Management Sci.

CACHON AND ZIPKIN
Competitive and Cooperative Inventory Policies

952 Management Science/Vol. 45, No. 7, July 1999



, A. Federgruen, Y. Zheng. 1997. Coordination mechanisms for
decentralized distribution systems. Working paper, Columbia
University, New York.
, Y. Zheng. 1994. Lower bounds for multi-echelon stochastic
inventory systems. Management Sci. 40 1426–1443.

Clark, A., H. Scarf. 1960. Optimal policies for a multi-echelon
inventory problem. Management Sci. 6 475–490.

Cooper, R., D. DeJong, R. Forsythe, T. Ross. 1989. Communication in
the battle of the sexes games: Some experimental evidence.
Rand J. Econom. 20 568–587.

Donohue, K. 1996. Supply contracts for fashion goods: Optimizing
channel profits. Working paper, Wharton School, Philadelphia,
PA.

Ha, A. 1996. Supply contracts for a short-life-cycle product with
demand uncertainty and asymmetric cost information. Work-
ing paper. Yale University, CT.

Hausman, W., N. Erkip. 1994. Multi-echelon vs. single-echelon
inventory control policies. Management Sci. 40 597–602.

Federgruen, A., P. Zipkin. 1984. Computational issues in an
infinite horizon, multi-echelon inventory model. Oper. Res.
32 818 – 836.

Fudenberg, D., J. Tirole. 1991. Game Theory. MIT Press, Cambridge.
Kouvelis, P., M. Lariviere. 1996. Decentralizing cross-functional

decisions: Coordination through internal markets. Working
paper. Duke University, Durham, NC.

Kreps, D. 1990. A Course in Microeconomic Theory. Princeton Univer-
sity Press, Princeton, NJ.

Kumar, Nirmalya. 1996. The power of trust in manufacturer-retailer
relationships. Harvard Bus. Rev. Nov.–Dec.

Lal, R., R. Staelin. 1984. An approach for developing an optimal
discount pricing policy. Management Sci. 12 1524–1539.

Lee, H., J. Whang. 1996. Decentralized multi-echelon supply chains:
Incentives and information. Working paper, Stanford Univer-
sity, Stanford, CA.

Li, L. 1992. The role of inventory in delivery time-competition.
Management Sci. 38 182–197.

Lippman, S., K. McCardle. 1997. The competitive newsboy. Oper.
Res. 45 54–65.

Moses, M., S. Seshadri. 1996. Policy mechanisms for supply chain
coordination. Working paper, New York University, New York.

Muckstadt, J., L. J. Thomas. 1980. Are multi-echelon inventory
methods worth implementing in systems with low-demand
rates? Management Sci. 26 483–494.

Narayanan, V., A. Raman. 1996. Contracting for inventory in a
distribution channel with stochastic demand and substitute
products. Working paper, Harvard University, Cambridge,
MA.

Parlar, M. 1988. Game theoretic analysis of the substitutable product
inventory problem with random demand. Naval Res. Logist. 35
397–409.

Pasternack, B. 1985. Optimal pricing and return policies for perish-
able commodities. Marketing Sci. 4 166–176.

Porteus, E. 1997. Responsibility tokens and supply chain manage-
ment. Working paper, Stanford University, Stanford, CA.
, S. Whang. 1991. On manufacturing/marketing incentives.
Management Sci. 37 1166–1181.

Sterman, J. 1989. Modeling managerial behavior: Misperceptions of
feedback in a dynamic decision making experiment. Manage-
ment Sci. 35 321–339.

Tsay, A. 1996. The quantity flexibility contract and supplier-customer
incentives. To appear in Management Sci.

Accepted by Luk Van Wassenhove; received March 7, 1997. This paper has been with the authors 9 months for 2 revisions.

CACHON AND ZIPKIN
Competitive and Cooperative Inventory Policies

Management Science/Vol. 45, No. 7, July 1999 953


