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Consumers often know what kind of product they wish to purchase, but do not know which specific variant
best fits their needs. As a result, a consumer may find an acceptable product in one retailer but nevertheless

purchase nothing, opting to search other retailers for an even better product. We study several models of retail
assortment planning, some of which explicitly account for consumer search and one that does not, which we
call the “no-search” model. Even though the no-search model never includes an unprofitable variant in the
assortment, in the presence of consumer search, it may indeed be optimal to include an unprofitable variant.
Furthermore, we find that the no-search model can lead to an assortment with an expected total profit that is
significantly less than optimal. In the extreme, the no-search model may recommend closing down a category
(i.e., carry no variants) even if a profitable assortment exists (a 100% profit loss). We conclude that failing to
incorporate consumer search into an assortment planning process may cause a retailer to underestimate the
substantial value a broad assortment has in preventing consumer search. We discuss how the insights from our
stylized models may apply to actual assortment planning processes.
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1. Introduction
Consumers often know what kind of product they
wish to purchase, but do not know which specific
variant best fits their needs. Consider, for example,
a consumer shopping for a new digital camera. Upon
inspecting the cameras in the assortment of a retail
store, the consumer might be able to assess the util-
ity associated with each of the present cameras, yet
would face uncertainty about those outside the store’s
assortment. Hence, even if she finds an acceptable
camera in the current store, exceeding her utility asso-
ciated with not buying a camera at all, she may nev-
ertheless continue her search at other retailers. This
paper studies whether it is important for an assort-
ment planning process to explicitly account for con-
sumer search.

It is well documented that in most retail categories,
there is a considerable growth in the number of prod-
ucts available in the market (e.g., Pashigian 1988,

Bayus and Putsis 1999), which raises the issue of
whether the desire to please all consumers may have
led to excessive product proliferation, i.e., assort-
ments with more variants than optimal (Quelch and
Kenny 1994). Although assortment planning in prac-
tice requires a blend of art (i.e., intuition) and science
(i.e., analytical models), some argue that pushing the
balance further in the direction of science could help
to control the problem of unproductive variety (Fisher
et al. 2000). Not surprising, the academic literature
includes a growing number of models that balance
the trade-off between the expanded revenue of a
deeper assortment and its higher operational costs,
e.g., Aydin and Hausman (2002), Chong et al. (2001),
Kok and Fisher (2004), Mahajan and van Ryzin (2001),
Smith (2002), Smith and Agrawal (2000), and van
Ryzin and Mahajan (1999). All of those papers begin
with the presumption that a retailer has a consumer
choice model with known parameters and then,
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assuming the consumer choice model accurately rep-
resents actual consumer choices, these papers develop
methods for choosing an assortment that optimizes
expected profit.

Our work is similar to the current literature in that
we also develop consumer choice models and meth-
ods for finding assortments that optimally balance
revenue expansion with operational costs. We differ
in two respects. The current literature models search
implicitly, but we model it explicitly. An implicit
model of search includes an option for the consumer
to purchase nothing from the assortment, which can
be either because the consumer chooses to indeed
never make a purchase in the category or because the
consumer chooses to search other retailers for a bet-
ter variant. Furthermore, in the implicit model, the
value of the no-purchase option to the consumer is
assumed to be independent of the other items in the
assortment, whereas in an explicit model of search,
a consumer’s expectations and the retailer’s assort-
ment both influence the search decision. For example,
the value of search to a consumer may decrease as a
retailer broadens its assortment because the consumer
then expects to find fewer new variants at other retail-
ers. Indeed, if the retailer includes all possible variants
in its assortment, then there is absolutely no value for
a consumer to search other retailers for a better prod-
uct (i.e., the consumer is already aware of every pos-
sible product by inspecting the retailer’s assortment).
This benefit of a broad assortment is not captured in
models with implicit search.1

A second departure from previous work is that
we do not presume a retailer knows the parame-
ters of the actual consumer choice model, i.e., a con-
sumer choice model in practice must be estimated
from data, data that could depend on the assortment
decisions of the retailer.2 This issue is relevant in

1 There is an extensive literature in economics that considers con-
sumer search among retailers over price, e.g., Stigler (1961), Salop
and Stiglitz (1977), and Stahl (1989). In our model consumers do not
search for a lower price, but rather for a better product. Anderson
and Renault (1999), Stahl (1982), and Wolinsky (1983, 1984) incor-
porate consumer search for a better product, but they assume each
retailer carries only a single product. Weitzman (1979) and Morgan
(1983) study optimal consumer search strategies, but do not inves-
tigate how consumer search influences retail assortment planning.
2 Fisher and Rajaram (2000) study a model for merchandise testing
to calibrate a consumer choice model (i.e., a sales forecast for each

our context precisely because, as we just discussed,
consumer choice is influenced by assortment deci-
sions and search, i.e., parameters estimated with a
narrow assortment may not match the parameters
estimated with a broad assortment because consumer
expectations between those two assortments are not
the same, thereby causing differences in their search
behavior. Hence, although an assortment may be opti-
mal according to the consumer choice model esti-
mated with data from that assortment, it may not be
the optimal assortment (because the estimated choice
model does not describe actual consumer choices with
the true optimal assortment).3 Furthermore, because
we develop consumer choice models with search,
we are able to explore the robustness of an assort-
ment planning model that does not explicitly include
search.

The remainder of this paper is organized as fol-
lows. The next section describes our three models
of assortment planning. Section 3 studies the struc-
ture of the optimal assortment. Section 4 evaluates the
performance of the assortment planning model that
does not explicitly account for search. The final sec-
tion concludes.

2. Model
A risk-neutral retailer sells a product with n pos-
sible variants to risk-neutral consumers. Let N =
�1�2� � � � �n� be the set of possible variants and let S
be the subset of variants in the retailer’s assortment.
In addition to the actual product variants, we create
variant 0, a faux variant, to represent the no-purchase
option, i.e., a consumer who chooses variant 0 does
not purchase any variant.

We use the multinomial logit (MNL) to model con-
sumers’ utilities across variants. It is an intuitive,
frequently used, and successfully applied consumer
choice model (see Anderson et al. 1992, Mahajan and
van Ryzin 1998 for a review of the assumptions, lim-
itations, characteristics, and properties of the MNL

store and each product), but they do not consider which products
to stock, nor do they account for consumer search.
3 Cachon and Kok (2005), Cooper et al. (2005), and Armony and
Plambeck (2005) also study the interaction between actions taken
(such as which variants to include in an assortment) and the
observed data used to estimate model input parameters, but in sig-
nificantly different contexts.
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model). Let Ui be a consumer’s utility from variant
i ∈ 
0�N �� Ui = ui − pi� + �i, where ui is a constant,
identical across consumers, pi is the market price of
variant i p0 = 0�, and the random variable �i has a
zero mean Gumbel distribution. We refer to ui − pi�

as variant i’s expected net utility. We label the vari-
ants in decreasing net utility order. Let F x� be the
distribution function of �i,

F x�= exp
−exp−x/�+�����

where � is Euler’s constant and � is a scale parame-
ter. Let f x� be its density function. The realizations
of �i are independent across consumers, so �i creates
consumer heterogeneity, i.e., while each consumer has
the same expected net utility for each variant, their
realized utilities differ.

Let qiS� be the probability a consumer chooses
variant i in the assortment S. Without loss of gener-
ality, the consumer population is normalized to one,
so qiS� is also variant i’s demand. As in van Ryzin
and Mahajan (1999), qiS� does not depend on the
inventory status of the variants nor do consumers
substitute if their preferred variant is out of stock.
However, qiS� does depend on the retailer’s assort-
ment and consumers’ expectations regarding search,
as detailed in §2.1.

Define mi as the net profit margin of variant i (price
minus purchase cost). To obtain a simple structure for
the optimal assortment, we assume the profit mar-
gins are identical across all variants, mi =mj , but our
results are easily extended if margins are (weakly)
increasing in net utility, i.e., mj ≥mk if uj −pj ≥ uk−pk.
In the numerical study we consider the case in which
margins are decreasing in net utility. Let cqiS�� be
the operational costs associated with including vari-
ant i in the assortment, i.e., the shelf space, hold-
ing, handling, and transportation costs of stocking
variant i. To reflect economies of scale in operational
costs, such as is common in the economic order quan-
tity (EOQ) or newsvendor models, we assume c·�
is concave and increasing. (Note that because the
demand rate has been normalized to one, the cost
function should reflect this normalization.)

The expected profit of a variant i ∈ S is

�iS�=miqiS�− cqiS���

The retailer’s objective is to choose an assortment S

to maximize expected profit

max
S⊆N

�S�=∑
i∈S

�iS�� (1)

2.1. Evaluating Demand
We consider three models for consumer search. The
first is the no-search model. In the no-search model,
a consumer purchases a variant in the retailer’s
assortment if Umax = maxi∈S Ui is greater than (or
equal to) the no-purchase utility, U0; otherwise the
consumer purchases nothing. In this model, the
no-purchase variant represents the fixed value of con-
sumer search, i.e., from the retailer’s perspective, it is
not clear if the consumer leaves to never make a pur-
chase or leaves to search other retailers to make some
purchase. Let qm

i S� be variant i’s share of demand
in this model, where the superscript “m” is used to
denote the traditional MNL without explicit search. It
is well known that (Anderson et al. 1992, ch. 2)

qm
i S�= vi∑

j∈S vj + v0
for i= 0 and i ∈ S� (2)

where vj = expuj − pj�/�� is referred to variant j’s
“preference.”

From (2), in the no-search model, there exists a can-
nibalization effect: variant i’s demand decreases as the
assortment “expands,” where expands means either
that additional variants are added to the assortment
or that the new assortment’s total preference is larger.
To be specific, we say that assortment S+ is “deeper”
than S (or expands upon S) if

∑
k∈S vk <

∑
k∈S+ vk.

Clearly, S+ is deeper than S if S ⊂ S+, but S+ can be
a deeper assortment even with fewer variants as long
as some of the variants in S+ are not in S. (But the
comparison between S and S+ makes sense relative to
variant i only if variant i is in both assortments.)

Now consider the two search models. In each one,
a consumer still does not purchase if the no-purchase
variant has the highest realized utility. However, the
consumer may not purchase even if there is an accept-
able product in the retailer’s assortment (i.e., a vari-
ant with higher utility than the no-purchase utility),
because the consumer may choose to continue her
search (at some other retailer) for an even better vari-
ant. Whether a consumer chooses to search depends
on a number of factors: the realized utility of the
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best variant at the retailer, the cost of search, and the
consumer’s expectation on the value of search out-
side the retailer’s assortment. It is the latter that dif-
ferentiates our two search models. Roughly speaking,
with the independent assortment search model a con-
sumer expects that the retailer’s assortment is unique,
i.e., if the search option is chosen, then the con-
sumer expects to observe different variants by search-
ing. It follows that the consumer’s expected value
from search is independent of the retailer’s assort-
ment (because search yields different variants no mat-
ter which variants the retailer carries). Examples that
might reasonably fit this setting include antique deal-
ers and jewelry stores. In the overlapping assortment
model, there is a limited number of products available
in the market, as in the digital camera example. As
a result, expanding the retailer’s assortment reduces
the value of search because search leads to fewer new
variants.

Now consider the details of these models. With the
independent assortment search model, a consumer
expects to receive utility Ur = ur + �r if the consumer
chooses to search, where ur is a constant common
to all consumers and �r is a zero mean Gumbel ran-
dom variable. (Note that this model is equivalent to
a model that assumes search gives a consumer the
possibility to purchase from another set of products
in which the utilities of those variants are also the
realizations of Gumbel random variables, because the
Gumbel is closed under maximization.) Let b be a con-
sumer’s cost if the search option is chosen. Therefore,
the consumer choice process is as follows: a consumer
observes the realizations of the utility of the S vari-
ants in the retailer’s assortment and the no-purchase
utility; the consumer surely does not purchase a vari-
ant from the retailer if Umax < U0; if Umax > U0, then
the consumer either purchases her most preferred
variant from the retailer or the consumer chooses to
search (thereby incurring the search cost b). From
the retailer’s perspective, the no-purchase variant is
equivalent to the search option: in either case, the
consumer does not purchase from the retailer. From
the consumer’s perspective, they are different: with
the search option the consumer decides to forgo
an acceptable variant Umax > U0� for the chance of
earning an even higher utility with search. (Umax is
observed by the consumer when choosing whether to

search, but the realization of Ur is not yet observed,
so a realization Ur < Umax is possible.) The next the-
orem gives each variant’s share of demand, qsi

i S�,
where the superscript “si” is used to denote the search
model with independent assortment. All proofs can
be found in the appendix.

Theorem 1. The demand for variant i in the indepen-
dent assortment search model is

qsi
i S�= qm

i S�1−H 
U�S�� for i ∈ S (3)

and

qsi
0 S�= 1−∑

i∈S

qsi
i S��

where 
U = ur − b, H 
U�S�= exp−%v0 +
∑

j∈S vj�� and
%= exp
− 
U/�+���.

In the independent assortment search model, a con-
sumer searches only if Umax (the best utility among the
retailer’s assortment) is less than the search thresh-
old 
U , which is independent of the retailer’s assort-
ment. (The value of search does not depend on
the retailer’s assortment because all new variants
are observed if search is chosen in the independent
assortment search model.) As a result, according to
Theorem 1, the demand for variant i in this model is
a fixed fraction, 1−H 
U�S��, of the demand for vari-
ant i in the no-search model, qm

i S�. Note that fraction
depends on the chosen assortment even though the
search threshold 
U is fixed.

Unlike in the no-search model, it is not clear
that the cannibalization effect always exists in the
independent assortment search model: while qm

i S�

decreases as the assortment expands, the search
adjustment factor, 1−H 
U�S��, increases. According
to Theorem 2, the former dominates the latter, i.e., the
cannibalization effect does exist in the independent
assortment search model.

Theorem 2. For all S and S+ such that
∑

k∈S vk <∑
k∈S+ vk, qsi

i S� > qsi
i S+�� ∀ i ∈ �S ∩ S+� in the indepen-

dent assortment search model, variant i’s demand is lower
in a deeper assortment.

In the overlapping assortment search model, the
market contains a limited number of potential vari-
ants, e.g., digital cameras. As a result, the value
of search to a consumer may very well depend
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on the retailer’s assortment: as the retailer deepens
his assortment, a consumer may lower her expected
value of search because search provides value only if
new variants are discovered. To be specific, define S̄

to be the variants outside the retailer’s assortment,
S̄ = N − S. The consumer choice process is now as
follows: The consumer observes the no-purchase util-
ity, U0, and the utility for each variant in the retailer’s
assortment; the consumer surely does not purchase
if U0 > Umax& if U0 < Umax, then the consumer either
purchases the highest utility variant in S or chooses
to search. If search is chosen, the consumer incurs
the cost b but then has the opportunity to purchase
the best variant in the entire set N , i.e., the consumer
finds another retailer (or a combination of retailers)
that has an assortment, which includes both S and S̄,
and the consumer’s realized preferences for variants
in set S remain the same (i.e., there is not a new
random draw of utilities for the variants in S). The
latter implies that a consumer’s utility for a variant
does not depend on where the consumer purchases
the item. Furthermore, in this model, the retailer is
effectively competing against some full assortment
retailer with the same prices as our retailer. (If out-
side prices differed from the retailer’s price, then to
approximately account for this difference, adjust the
search cost parameter b: lower outside prices reduce b

and higher outside prices increase b.)
To the extent that the independent assortment

search model represents a worst case for the search
option (the consumer can end up with a less desirable
variant if search is chosen), the overlapping assort-
ment search model represents the best case for the
search option (the consumer can only find a more
desirable product by searching). We suspect other
search models are qualitatively a mixture of these
two extremes, and they are analytically more cumber-
some.4 Theorem 3 is the counterpart to Theorem 1,

4 In the construction of a consumer search model, there is clearly a
choice to be made between richness and parsimony. A rich model
reflects many possible nuances involved in the consumer search
process. For example, there surely is heterogeneity in consumer
search costs and a consumer’s expectation regarding the value of
search can be quite complex: it could depend on the number of
previous retailers the consumer visited, whether the consumer can
return to the current retailer and the consumer’s belief regarding
how many new variants and which variants the consumer could

where the superscript “so” is used to denote the
search model with overlapping assortment.

Theorem 3. Variant i’s demand in the overlapping
assortment search model is

qsoi S�= qm
i S�1−H 
US��S�� for i ∈ S�

where H is defined as in Theorem 1, and 
US� is the unique
solution to ∫ �


US�
�y− 
US��w�yS� S�d�y = b� (4)

where w�yS� S� is the density function of maxi∈S̄ Ui (the
maximum utility observed in set S̄ =N −S). Furthermore,
for any given S and S+ such that

∑
k∈S vk <

∑
k∈S+ vk,
US� > 
US+�, the search threshold 
US� is lower in a

deeper assortment.

As in the independent assortment search model,
variant i’s demand in the overlapping assortment
search model equals a fraction of the no-search model
demand (assuming the same estimated preferences
for the variants). However, the key difference between
the two search models is that the search threshold in
the independent assortment search model is fixed, 
U ,
whereas it decreases in the assortment depth in the
overlapping assortment search model  
US� > 
US+��.
(Again, depth is measured as the sum of preferences.)
As a result, although the cannibalization effect exists
in the no-search and in the independent assortment
search models, it can be shown that the cannibaliza-
tion effect does not always exist in the overlapping
assortment search model: given i ∈ S and S ⊂ S+, it
is possible that variant i’s demand increases as the
assortment expands from S to S+, i.e., qsoi S� < qsoi S+�.5

sample via search. We believe that incorporating all of these fea-
tures into a search model would render the model analytically
intractable and unimplementable (e.g., it would not be clear how all
of the necessary input parameters could be empirically estimated
in practice). Hence we constructed our two parsimonious models
with the hope that they capture the first order effects introduced by
the presence of consumer search. Furthermore, they represent two
extremes regarding consumer expectations on the value of search,
so we are able to use these models to better understand, from a
qualitative perspective, how variation in expectations may influ-
ence our findings.
5 For instance, in a two-variant scenario with parameters: u1 = 5,
u2 = 3, u0 = 1, and b = 0�1. The variant 1’s demand in the assort-
ment {1} is 0.53, but its demand in the assortment �1�2� is 0.87.
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In that case, not only does an expanded assortment
generate incremental revenue from the added vari-
ants, the added variants actually increase the demand
(and operational efficiency) of the variants already in
the assortment.

3. The Optimal Assortment
The optimal assortment for a retailer must trade off
the benefit of including a variant in the assortment (it
generates incremental sales) with the cost of includ-
ing a variant in the assortment (if the cannibalization
effect is present, then it reduces demand for the other
variants, thereby reducing their revenue and lower-
ing their operational efficiency). Because of this ten-
sion, in some cases, the profit function is ill-behaved:
the optimal assortment can only be found with full
enumeration over the 2N − 1 possible assortments. In
other cases, it can be shown that the optimal assort-
ment is included in the following (small) set, which
we call the popular assortment set:

P = �� �� �1�� �1�2�� � � � � �1� � � � �n���

where recall the variants are labeled in decreasing
order of net utility (ui − pi is decreasing in i).

This section identifies the procedure for finding the
optimal assortment with each of the three models. For
notational convenience, we introduce some new nota-
tion. Let Sj = S ∪ �j� and let qivj� be the demand for
variant i with assortment Sj . Previously we used qiSj �

for variant i’s demand, but here we wish to make
explicit the relationship between variant i’s demand
and variant j’s preference. Similarly, let �ivj� be the
profit of product i when variant j is added to assort-
ment S. Finally, let Lvj� be the change in the retailer’s
profit when the assortment S is expanded to include
variant j :

Lvj�=
∑
i∈S

�iS�−
∑
i∈S

�ivj��

If �jvj� > Lvj�, then adding variant j to S increases
the retailer’s profit.

3.1. No-Search Model
van Ryzin and Mahajan (1999) consider the assort-
ment planning problem in the no-search model with a
particular cost structure derived from the newsvendor

model. They find that the optimal assortment is in the
popular set P by showing that for any assortment S

(which need not include the most popular variants),
the retailer’s profit function is quasi-convex in the net
utility of the variant added to S. Therefore, if a vari-
ant is added to the assortment, it should be the most
popular variant (highest net utility). Theorem 4 gener-
alizes their results to include any concave increasing
cost function.

Theorem 4. The function hmvj�=�m
j vj�−Lmvj� is

quasi-convex in vj on the interval 
0���.

3.2. Independent Assortment Search Model
The independent assortment search model is simi-
lar to the no-search model with the exception of the
adjustment factor, 1−H 
U�S�, which is increasing as
the assortment is expanded. Nevertheless, according
to Theorem 5, the retailer’s profit is quasi-convex in
the net utility of a variant added to any assortment S.
Hence the optimal assortment is again within P .

Theorem 5. The function hsivj�= �si
j vj �− Lsivj� is

quasi-convex in vj on the interval 
0���. In the indepen-
dent assortment search model, the optimal assortment is
always within the popular set P .

3.3. Overlapping Assortment Search Model
The overlapping assortment search model is more
complex than the independent assortment search
model because now the consumer’s search threshold,

US�, is decreasing in the depth of the assortment. As
a result, a new variant does not always cannibalize
demand from other variants and the retailer’s profit
is not necessarily quasi-convex in the net utility of
an added variant. Hence the optimal assortment may
not be in the set of popular assortments, P . While we
did find a scenario in which the optimal assortment
is outside P , that did not occur in any of the scenarios
in our numerical study (with identical margins across
variants), which suggests that restricting the search
for the optimal assortment to P is reasonable for a
wide range of parameters.6 However, if margins are
decreasing in preferences, i.e., the more popular vari-
ants have smaller margins, then the numerical study

6 The parameters with this scenario include m1 = m2 = m3 = 2,
u0 = 3�4, u1 = 4�1, u2 = 0�7, u3 = 0�6, b = 0�122� and the cost function
is cq�= 0�5q1/2. The optimal assortment is �1�3�.
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indicates it is likely that the optimal assortment is out-
side of P . We note that full enumeration is also neces-
sary in the no-search model if margins are decreasing
in preferences.

Two other properties of the optimal solution to the
overlapping assortment search model are worth dis-
cussing. First, in that model, it may be optimal to
have an item in the assortment that has negative profit
so as to decrease consumer search, whereas in the
other models, each variant in the optimal assortment
earns a strictly positive profit (to offset its cannibaliz-
ing effect on other variants). Second, in the overlap-
ping assortment search model, a retailer can prevent
search entirely by carrying the full assortment. In fact,
according to Theorem 6, there exists a sufficiently low
search cost such that the full assortment is optimal for
the retailer.

Theorem 6. In the overlapping assortment search
model, for any given set of preference, �v0�v1� � � � � vn�, if
the full assortment (all n variants) yields a positive profit,
then there exists a threshold consumer search cost b̄ such
that the full assortment is optimal for all b ≤ b̄.

4. Implementation of the
No-Search Model

Implementation of an assortment planning model
begins with the estimation of the model’s necessary
input parameters, and then the model is evaluated to
produce a recommended assortment (i.e., the assort-
ment that is optimal according to the model). With the
no-search model the input parameters include each
variant’s preference vi�, margin mi�, and the oper-
ational cost function, c·�. We believe the latter two
are relatively straightforward to estimate, but it is
not straightforward to estimate each variant’s prefer-
ence because that involves breaking a circularity: To
estimate consumer choice, we need an assortment to
observe sales data, and to choose a good assortment
we need an estimate of consumer choice.7

7 The retailer may not need to actually implement the assortment
in all stores. The retailer could conduct merchandize testing in a
few stores or the retailer could conduct focus groups. But again, the
data collected from those methods are dependent on the particular
assortment included in the test. This is even an issue with a more
intuitive approach to assortment planning. For example, suppose
the retailer asks a merchant to give an estimate of each variant’s

We study two approaches to break this circular-
ity. With the depth-test approach, the retailer presents
the full assortment to consumers and uses the result-
ing sales data to estimate vi for each variant. Those
preferences are inputted into the no-search assortment
planning model and the recommended assortment is
implemented. Alternatively, the retailer could take an
iterative approach to estimate consumer preferences:
the retailer chooses some assortment, collects choice
data to estimate vis, chooses an assortment given the
latest estimates, and then continually iterates through
this process. We take these approaches to be stylized
representations of two extreme methods for imple-
menting an assortment planning model.8

Although both implementations of the no-search
model (depth test or iteration) correctly estimate pref-
erence for any given assortment, they do not correctly
estimate the preferences that would be observed with
a different assortment because they assume prefer-
ences are independent of the assortment chosen. In
other words, the no-search model correctly accounts
for consumer search for a given assortment, but then
fails to account for how preferences change because
of search if the assortment is altered.

Even though the no-search model does not correctly
model consumer preferences under all assortments
(because it does not explicitly account for consumer
search), it may result in optimal or near optimal
assortments. To explore this issue, we study a styl-
ized model of a retailer who follows either the depth
test or the iterative implementation of the no-search
assortment planning model. We assume that search
is relevant to consumer choice, and in particular, we
assume that either the independent search model or
the overlapping search model are the correct model
of consumer choice. Hence, the in our experiment,
we are able to compare the assortment chosen by

preference. In the true model, each variant’s preference depends
on which other variants are in the assortment, so even with this
approach there is a dependence between inputs and actions even
if that dependency is difficult to model (because it is not clear how
to model a merchant’s intuition of relative value).
8 For example, with short life-cycle products the retailer may be
able to implement some kind of depth test to measure preferences,
but will probably be unable to perform many iterations to collect
updated data. Hence our iterative approach represents an ideal case
in which the retailer has many opportunities to collect data.
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the two implementations of the no-search model with
the optimal assortment (the assortment chosen by the
actual consumer choice model). This comparison sug-
gests whether it is important to explicitly account for
consumer search in the assortment planning process.

With either implementation of the no-search model,
let diS� be variant i’s observed demand with assort-
ment S, where the demands have been normalized,
so that ∑

i∈S∪0

diS�= 1� (5)

Let �viS� be the estimate of variant i’s preference
using the sales data from assortment S and �vS� =
��v0S�� � � � � �vnS��. The “ˆ” superscript is used to
emphasize that �viS� is an estimate of variant i’s pref-
erence in contrast to variant i’s actual preference, vi,
which is not directly observable to the retailer. The
retailer obtains �viS� by solving the following system
of equations:

diS�=
�viS�∑

j∈S∪0 �vjS�
� i ∈ S ∪ 0�

There does not exist a unique solution to the above
equations, so without loss of generality, we set
�viS�= 1 for some i ∈ S ∪ 0. We choose variant 1 to be
our normalized variant: �viS�= v1 = 1.

Let x�v� be a correspondence that returns the
optimal assortment according to the no-search
model given the inputted preferences, �v. Recall,
the no-search model chooses an assortment within
the popular set P , i.e., x�v� ∈ P . With the depth-
test implementation the chosen assortment is x�v�,
where �v= �vN�. With the iterative implementation we
assume that the retailer begins with the full assort-
ment, as in the depth test, and then iterates. Let
xt be the tth assortment chosen by the retailer, let
�vt be the preference estimates from the tth assort-
ment and define the depth-test assortment as t = 1.
Thus the iterative assortment planning process begins
with x1 = N and �v1 = �vN�. Subsequent iterations
have xt+1 = x�vt� and �vt+1 = �vxt�. An assortment x∗

is stable if x∗ = x�v∗� and �v∗ = �vx∗�. With a stable
assortment, the assortment is optimal according to
the no-search model, given the estimated preferences
and the estimated preferences are observed, given the
assortment. Hence, the iterative process ends when a
stable assortment is chosen.

With both implementations of the no-search model,
we compare the profit of the assortment chosen
(x1 with the depth test and x∗ with iteration) with the
true optimal assortment, xo, given the assumed search
model (independent search or overlapping search).
Hence we do not consider the cost of conducting the
depth test nor the profits of the assortments chosen
before converging to the stable assortment. Further-
more, we assume that there is no sampling error, i.e.,
the sales estimates equal the expected sales estimates.
Thus we present an optimistic view of the no-search
model. (See Xu 2003 for a simulation study on the
impact of sampling errors.)

4.1. Analytical Results
As already discussed, the no-search model may
choose a nonoptimal assortment because it could
yield biased estimates of the variants’ preferences.
Interestingly, the no-search model actually does cor-
rectly estimate the relative preferences of any two
product variants: for all S and all 0 < i < j ≤ n, i ∈ S,
j ∈ S,

�viS�

�vjS�
= vi

vj

�

This occurs because with either search model
qm
i S�/qm

j S� is constant for all S that contain i and j :
for all S and all 0 < i < j ≤ n, i ∈ S, j ∈ S,

qsi
i S�

qsi
j S�

= vi

vj

and
qsoi S�

qsoj S�
= vi

vj

�

This is known as the Independence of Irrelevant
Alternatives (IIA) property: in either search model,
the relative preference between product variant i

and j does not depend on which other products are in
the assortment. Hence the no-search model correctly
estimates v1� � � � � vn no matter the assortment chosen.9

9 The IIA property is well known for the MNL consumer choice
model and in some cases it yields results that are inconsistent with
actual choices. Nested logit models are an extension of the MNL
used to deal with this issue. We suspect that our results continue to
hold, at least to some degree, even for more complex choice mod-
els: our results occur because the preference for one variant (the
no-purchase variant) depends on which other variants are included
in the assortment, so even more complex choice models are suscep-
tible to this bias if they do not include that dependency. In fact, in
our three models, the violation of the IIA property occurs precisely
because of search.
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But the IIA property does not hold between the no-
purchase variant and any of the product variants. For
example, with independent assortment search,

qsi
0 S�

qsi
i S�

= qm
0 S�+∑

j∈S qm
j S�H 
U�S�

qm
i S�1−H 
U�S��

�

which implies for i > 0 that �v0S�/�viS� depends on S.
The analogous result also holds for the overlapping
assortment model.

Because the IIA property does not hold for the
no-purchase variant, the no-search model provides
biased estimates of the product preferences relative
to the no-purchase option. Theorem 7 describes the
resulting bias.

Theorem 7. Take any assortment S and the preferences
estimated from that assortment, �vS�= �v0S�, �viS�� i ∈ S,
�vjN �� j ∈N − S�. With any narrower assortment S−, i.e.,∑

k∈S− vk <
∑

k∈S vk, the no-search model under-estimates
the no-purchase demand, d0S

−� ≥ qm
0 S− � �vS��. With

any deeper assortment S+, i.e.,
∑

k∈S vk <
∑

k∈S+ vk, the
no-search model overestimates the no-purchase demand,
d0S

+�≤ qm
0 S+ � �vS��.

From Theorem 7, the no-search model overesti-
mates the retailer’s demand with a narrower assort-
ment and underestimates the retailer’s demand with a
deeper assortment. The retailer overestimates demand
with a narrower assortment because the retailer does
not account for consumer search behavior: consumer
search is more likely as the assortment becomes nar-
rower, but that behavior is not reflected in the esti-
mates of the preferences.

By using Theorem 7, we are able to compare the
stable assortment in the iterative implementation with
the optimal assortment.

Theorem 8. Let x∗ be a stable assortment with the iter-
ative implementation of the no-search assortment planning
model. If search is governed by the independent assortment
search model, then any stable assortment x∗ has the optimal
number of variants or fewer, �x∗� ≤ �xo� (i.e., never more
than the number of variants in the optimal assortment).
If search is governed by the overlapping assortment search
model and �ix

o� is increasing for all qi ≥ qsoi xo�, then∑
j∈x∗ vj ≤

∑
j∈xo vj , i.e., the stable assortment is not deeper

than the optimal assortment.

Because the optimal and stable assortments with
the independent assortment search model are in the
popular set P , a deeper assortment (in terms of the
sum of the preferences) implies an assortment with
more variants. In the overlapping assortment search
model, there is no guarantee that the optimal and sta-
ble assortments are in the popular set P , so Theorem 8
cannot make a statement with respect to the num-
ber of variants, only with respect to the sum of the
preferences, but that is nearly as strong a statement.
Furthermore, because of the lack of the cannibaliza-
tion effect, the theorem’s result requires that increas-
ing demand for any variant in the optimal assortment
increases its profit, which is a relatively mild condi-
tion. Finally, if the optimal and stable assortments are
in the set P , then it immediately follows that the opti-
mal assortment has at least as many variants as the
stable assortment.

It is not possible to provide general results that
compare the depth-test assortment and the optimal
assortment, i.e., the depth-test assortment may or
may not be deeper than the optimal assortment. To
explain, in a stable assortment x∗, it follows that
�x∗� = �x∗ � �vx∗�� ≤ �xo�, which implies x∗ ≤ xo.
However, in the optimal depth-test assortment xd, we
have �xd� < �xd � �vN��, according to Theorem 7
and �xd � �vN�� <> �xo�. Similarly, it is not possible
to compare the depth-test assortment with the stable
assortment.

Theorem 8 applies to any stable assortment, and
we find in the numerical study that multiple stable
assortments are possible (but not common). It should
also be noted that Theorem 8 does not establish the
existence of a stable assortment, and we indeed find
in the numerical study instances in which there does
not exist a stable assortment.

4.2. A Numerical Study
We conducted a numerical study to further explore
the performance of the two implementations of the
no-search assortment planning model. In all scenarios
there are eight potential variants, n = 8. Three func-
tions are used to assign utilities: ui = 8−/1− e−i−1��

for / ∈ �1�3�6�. The no-purchase variant is assigned
one of three utilities: u0 = u1 − 0�25u1 − u8�, u0 =
u1 − 0�75u1 − u8�, and u0 = 0�75u8. The first case
has a relatively attractive no-purchase utility, while
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in the latter case the no-purchase utility is even
lower than the least attractive product variant. Nine
different cost functions are constructed: cq� = 1q2,
with 1 ∈ �0�2�0�5�0�8� and 2 ∈ �0�2�0�5�0�7�. These
functions include newsvendor-like cost functions as
well as the EOQ cost function. There are nine search
costs: b ∈ �0�1�0�4� � � � �2�5�. We consider six mar-
gin patterns: mi ∈ �3�5�7�1 + 1�5i − 1��52�5/63 +
10�5i2/63�11�5−10�5ei−1�. The first three have identical
margins across variants. In the latter three patterns,
margins are linear, concave, and convex in i, respec-
tively, but in each of them, margins are decreasing
in utility and m1 = 1 and m8 = 11�5. The variants
have identical prices, normalized to an arbitrary con-
stant. With independent assortment search, there are
three utilities for the outside alternative, ur ∈ �u1�u1 −
0�5u1 − u8��u8�. In total, there are 13,122 scenarios
with independent assortment search, 4,374 scenarios
with overlapping assortment search, and 17,496 sce-
narios in total.

With each scenario, we evaluated the optimal
assortment and the assortment chosen either with the
depth-test implementation or the iterative implemen-
tation of the no-search model. For scenarios in which
the optimal assortment may not be included among
the set of popular assortments, P , we enumerated
all assortments to determine the optimal one. With
identical margins, the optimal assortment was found
to always be contained within P , but with decreas-
ing margins, there are many scenarios with optimal
assortments outside of P .

We removed 277 scenarios from the data set:
78 were removed because the optimal assortment con-
tains no variants, i.e., there does not exist a prof-
itable assortment because operating costs are too high

Table 1 Scenarios in the Data Set and the Number of Stable Assortments

Scenarios dropped from
the data set Scenarios kept in the data set

Number of stable assortmentsZero variants No stable
Search Margin in optimal assortment, no
model pattern assortment assortment cycle∗ 0 1 2 3 Total

Independent Identical 0 7 187 6,367 6,554
Decreasing 45 19 483 6,006 8 6,497

Overlapping Identical 10 38 214 1,919 3 3 2,139
Decreasing 23 135 471 1,496 62 2,029

∗An assortment cycle is a series of assortments that the iterative implementation cycles through repeatedly.

relative to demand; and 199 were removed because
they did not contain a stable assortment nor a cycle of
assortments (a series of assortments that the iterative
implementation cycles through continuously). The
majority of the remaining scenarios contain at least
one stable assortment: 92% of the 17,219 remaining
scenarios. In scenarios with an assortment cycle, we
averaged the realized profit across the assortments.
In scenarios with more than one cycle or more than
one stable assortment, we assume the expected profit
equals the maximum across the choices. Table 1 sum-
marizes these data.

While we demonstrated that the cannibalization
effect of a deeper assortment implies that every
variant must make a strictly positive profit with
independent assortment search, we conjectured that
the optimal assortment with overlapping assortment
search might include some money losing variants.
In fact, we found a few scenarios (69 with identical
margins and 130 with decreasing margins) in which
the optimal assortment with overlapping assortment
search included variants with a negative expected
profit. Search costs were low in all of these scenar-
ios, so the retailer is willing to carry some money
losing variants to prevent consumer search. Never-
theless, even with overlapping assortment search, it
appears in most cases it is optimal for each item to
earn a positive profit. In those cases, the condition in
Theorem 8 is satisfied, so there are no stable assort-
ments that are deeper than the optimal assortment.

Figures 1 and 2 display the relationship between the
number of variants in the optimal assortment and the
number of variants in the no-search model. With inde-
pendent assortment search and identical margins, we
know (Theorem 8) that the stable assortments have no
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Figure 1 The Number of Variants in the Optimal Assortment Relative to the Number of Variants in the Depth-Test Implementation of the
No-Search Model
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Note. Bubble areas provide relative frequency.

Figure 2 The Number of Variants in the Optimal Assortment Relative to the Number of Variants in the Highest Profit Stable Assortment
from the Iterative Implementation of the No-Search Model
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more than the optimal number of variants, and this is
reflected in the data displayed in the figure. We find
the same result with overlapping search and identical
margins because the condition in Theorem 8 is gener-
ally satisfied and the stable and optimal assortments
are always (for these scenarios) in the popular set P .
Even with decreasing margins, we generally find that
with the no-search model the number of variants cho-
sen does not exceed the number in the optimal assort-
ment. Note that with decreasing margins even if the
same number of variants is chosen as the optimal
assortment, it is possible that the no-search model’s
profit is less than optimal because the wrong variants
are chosen. We conclude from these figures that the
no-search model rarely chooses more than the opti-
mal number of variants and often chooses fewer than
the optimal number of variants. (We also note that
these results occur even if the optimal assortment is
not part of the popular set.)

Table 2 provides some summary statistics for the
performance of the no-search model under eight
different combinations of implementation (depth test
or iterative), margin (identical or decreasing), and

Table 2 Average Profit Loss (as a % of the Optimal Profit)

Average % profit loss

Independent Overlapping
search search

Number of variants
Margin in the optimal Depth Depth
pattern assortment test Iterative test Iterative

Identical 1 0�0 0.0 0�0 0�0
2 1�0 0.5 3�7 3�3
3 1�6 0.4 8�5 5�7
4 2�1 0.6 15�9 9�6
5 1�3 0.4 20�2 12�1
6 1�7 0.6 27�4 13�4
7 0�9 0.3 52�7 38�1
8 0�2 0.1 21�5 14�0

Overall 0�5 0.2 9�9 6�4

Decreasing 1 14�3 5.5 52�4 28�9
2 6�5 1.3 70�9 36�3
3 5�5 0.9 18�7 7�4
4 5�7 1.0 24�7 12�1
5 7�0 1.3 26�1 9�5
6 5�5 0.7 28�7 13�5
7 10�5 1.3 37�6 15�3
8 12�3 6.8 70�8 48�9

Overall 7�3 1.4 41�0 21�3

search (overlapping or independent). The depth-test
implementation generally performs worse than the
iterative implementation. On average, the no-search
model performs well with independent search and
identical margins, but does not always perform well
with overlapping search. In particular, the average
profit loss is substantial in the identical margin sce-
narios when the optimal number of variants in the
assortment is large (say, five or more), and in the
decreasing margin scenarios when the optimal num-
ber of variants is either small (1 or 2) or large 6�7�8�.
The profit loss can be large even with few vari-
ants in the optimal assortment because the no-search
model chooses the wrong variants to include in the
assortment.

Figure 3 displays how the profit loss with the iter-
ative implementation depends on the search cost.
(The comparable figures with the depth-test imple-
mentation are similar.) It is clear from the figure
that ignoring consumer search is not a problem
with independent search and identical margins. With
overlapping search or decreasing margins, the profit
loss from not explicitly accounting for search can be
substantial. In some scenarios with low search costs,
the optimal assortment includes every variant, while
the no-search model’s stable assortment has no vari-
ants. Even if the no-search model expands the assort-
ment as search costs decrease, it generally does not
expand the assortment enough. This is illustrated in
Figure 4 for one scenario: as search costs decrease,
the no-search model indeed adds variants, but it does
not add enough variants, leading to a significant
profit loss.

To summarize, we find that with either imple-
mentation of the no-search model, the chosen assort-
ment tends to include too few variants (i.e., too
narrow). The profit consequence of these narrow
assortments is generally not substantial in the inde-
pendent search model, but is often substantial with
the overlapping search model. Although these results
are obtained using three specific assortment planning
models, we conjecture that our qualitative conclusions
should apply more generally: Ignoring search in an
assortment planning model is likely to lead to assort-
ments that are too narrow because doing so removes
a key benefit from expanding an assortment, the ben-
efit of preventing consumer search.
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Figure 3 Average Profit Loss (as a Percentage of the Optimal Profit) of the Best Stable Assortment
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Figure 4 Assortments Chosen for Five Scenarios that Differ Only in
Search Cost
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5. Conclusion
The focus of this research is on the question of
whether it is necessary to explicitly account for con-
sumer search in the assortment planning process.
We define three assortment planning models. The
no-search planning model, which is a slight gener-
alization of the model studied by van Ryzin and
Mahajan (1999), is based on the MNL model of con-
sumer choice and does not explicitly account for
consumer search. In particular, the no-search model
assumes the consumers’ preference for a variant is
fixed, i.e., not dependent on the other variants in the
assortment. The other two models expand upon the
no-search model to include some form of consumer
search. In the first one, which we call the indepen-
dent assortment search model, there is essentially an
unlimited pool of variants, which implies a low prob-
ability that the same product variant is carried in
the assortment of two retailers. In the second one,
called the overlapping assortment search model, there
is a limited pool of variants. Hence, expanding the
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retailer’s assortment reduces the value of search to a
consumer. In the extreme, a retailer with a full assort-
ment (all available variants) eliminates all search.

It is important to explicitly model search in the
assortment planning process if the no-search model
recommends assortments that are substantially less
profitable than the optimal assortment. We identify
the optimal assortment by assuming the true con-
sumer choice model is one of our search models. We
find that the no-search model performs well on aver-
age with independent assortment search: in categories
(such as antiques or jewelry) where the potential set
of variants is so large that it is unlikely any two retail-
ers carry the same assortment, the no-search model
calibrates itself reasonably well to indirectly account
for consumer search. However, the no-search model
does not perform well with overlapping assortment
search, which is more appropriate in environments
with a limited, but potentially large, amount of vari-
ety (e.g., digital cameras). In particular, the no-search
model leads the retailer to choose too few vari-
ants in the assortment. In some extreme cases, the
no-search model recommends not carrying a single
item in the assortment even though the full assort-
ment is profitable. Intuitively, the no-search model
performs worse as search costs decrease, i.e., as it
becomes cheaper for consumers to search, it becomes
more important to explicitly account for their search
preferences.

We recognize that our observations are derived
from three stylized models, which were chosen for
analytical tractability and consistency with the exist-
ing literature. Nevertheless, we suspect our qualita-
tive results do not depend critically on the details of
our models. For example, even without MNL con-
sumer preferences, there is likely to be a trade-off
between the expanded variety of a broader assort-
ment and the additional operational costs of more
variety, and a consumer’s value from searching for
a better product is likely to decrease as a retailer
expands its assortment. And even if a retailer chooses
to implement a different analytical assortment plan-
ning process, that planning process must begin with
a consumer choice model and some estimation of
demand parameters. Hence, any implementation of
an analytical model must be careful if its estimated
inputs are somehow influenced by the recommended

actions the model outputs. (In other words, we feel
this issue is relevant even if a retailer were to imple-
ment an assortment planning model that differed
from the ones we consider.)

Our results also contribute to the debate on whether
the trend in product proliferation is excessive or
not. If an analytical model is applied to a retailer’s
assortment and that analytical model does not explic-
itly account for consumer search, then the model
may recommend to narrow the assortment even
though the true optimal assortment is broader. In
other words, the trend toward broad assortments may
be because of an intuitive understanding by retail
managers that broad assortments prevent consumer
search. Interestingly, this bias toward narrow assort-
ments from no-search analytical models can occur
even if the firm iteratively updates its demand esti-
mates as it changes its assortment. It can even occur
if the demand estimates and the assortment are sta-
ble (i.e., the assortment is optimal given the demand
estimates and the demand estimates are observed
given the chosen assortment). Furthermore, the con-
sequence for failing to account for consumer search
in an assortment planning model can be substantial:
the no-search model may recommend closing down a
category (include no variants in the assortment) even
though there exists an assortment with positive profit
(a 100% profit loss).
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Appendix
Proof of Theorem 1. Search is worthwhile if, and

only if,
∫ �

Umax−ur

ur + x−Umax�f x�dx

−
∫ Umax−ur

−�
Umax −ur − x�f x�dx ≥ b�

where the first term is the expected gain from search, the
second term is the expected loss from search, and the
third term is the cost of search. After rearranging terms
and recognizing E
�r � = 0, the above simplifies to ur − b ≥
Umax: a consumer benefits from search if Umax < 
U , where

U = ur − b.
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It remains to evaluate qsi
i S�. Variant i is chosen if Ui =

Umax (it is the best variant in the assortment), Ui > 
U (its
utility is above the search threshold), and Ui > U0 (its utility
is better than no purchase). Let / be the realization of �i�
Thus, variant i is chosen if / ≥ 
U − ui − pi� (Ui > 
U� and
Ui ≥ max�Umax�U0�, which has probability

∏
j=0� j∈S/i F ui −

pi� + / − uj − pj ��. Overall, the probability variant i is
selected, qsi

i S�, is

qsi
i S�=

∫ �


U−ui−pi�
f /�

∏
j=0
j∈S/i

F ui − pi�+/− uj − pj �� d/�

Following the process of deriving choice probabilities
in the traditional MNL, substitute the cumulative distribu-
tion function (CDF) of the Gumbel distribution and con-
duct the change of variables 4= exp
−//�+ ��� and vj =
expuj − pj �/�� to obtain

qsi
i S�=

∫ 5

0
exp

[
−4

(
v0 +

∑
j∈S vj

vi

)]
d4�

where 5= exp
− 
U − ui�/�+ ���. The above integral sim-
plifies to

qsi
i S� = vi

v0 +
∑

j∈S vj

{
1− exp

[
−
(
v0 +

∑
j∈S

vj

)

· exp
− 
U/�+���

]}

= qm
i S�1−H 
U�S��� �

Proof of Theorem 2. Define function T 7� = 71 −
exp−%/7��, where % is a positive constant. The first deriva-
tive of T 7� is

T ′7�= 1−
(

1+ %

7

)
exp

(
− %

7

)
�

T 7� is an increasing function on the interval 
0��� because
it follows from the Taylor expansion of exp%/7� that 1 +
%/7 < exp%/7� for 7≥ 0 and %≥ 0. From (3), we have

qsi
i S�= viT

((∑
k∈S

vk + v0

)−1)
�

If
∑

k∈S vk <
∑

k∈S+ vk, it implies that
∑

k∈S vk+v0 <
∑

k∈S+ vk+
v0. Thus, by the fact that T 7� is increasing, it follows that
qsi
i S� > qsi

i S+�� ∀ i ∈ �S ∩ S+�. �

Proof of Theorem 3. Let �yS be the realized maximum
utility from the set S̄, and let w�yS� S� be its density func-
tion. (Because the realizations of �i are independent for the
products in S̄, it is straightforward to evaluate w�yS� S�.)
A consumer searches if∫ �

Umax

�yS −Umax�w�yS� S�d�yS ≥ b� (6)

the consumer is assured of at least Umax utility, so the
first term is the expected incremental gain over Umax from

search. The left-hand side of (6) is decreasing in Umax, so
there exists a unique threshold utility, 
US�, such that∫ �


US�
�yS − 
US��w�yS� S�d�yS = b�

A consumer searches if, and only if, Umax is less than
the threshold 
US�. Note that the same holds in the
independent assortment search model except the threshold
is independent of the assortment in that model. Therefore
the analysis to determine qsoi S� follows the approach in The-
orem 1 to determine qsi

i S�.
Let �yS+ be the realized maximum utility from the set S̄+ =

N − S+ and g�yS+� S+� be its density function. Note that the
CDF of maxi∈S Ui is given as the function H defined in The-
orem 1. Since

∑
k∈S vk <

∑
k∈S+ vk, which implies

∑
k∈N−S vk >∑

k∈N−S+ vk, by the definition of H , �yS is stochastically larger
than �y+

S . Therefore, according to the Proposition 9.1.2 in
Ross (1996), for any given y, we have∫ �

y
�yS − y�w�yS� S�d�yS >

∫ �

y
�yS+ − y�g�yS+� S+� d�yS+ � (7)

Since both sides of (7) are decreasing in y, therefore we have

US� > 
US+�, where 
US� and 
US+� are the two values
of y that make both sides of (7) equal to b, respectively. �

Proof of Theorem 4. Let VS = v0 + ∑
i∈S vi. From

differentiation,

hm ′vj �

=
[
mVS − c′

(
vj

vj+VS

)
VS

]
−
[
m
∑

i∈S vi −
∑

i∈S c′
(

vi
vj+VS

)
vi

]
vj +VS�

2
�

(8)

The numerator is increasing in vj because vj/vj + VS� is
increasing in vj , vi/vj + VS� is decreasing in vj and c·�
is concave. It follows (because vj + VS�

2 > 0� that there is
at most one vj such that hm ′vj �= 0. �

Proof of Theorem 5. Differentiate hsivj �,

hsi ′vj � = mqsi ′
j vj �− c′qsi

j vj ��q
si ′
j vj �

+∑
i∈S


mqsi ′
i vj �− c′qsi

i vj ��q
si ′
i vj ��

= J vj �f vj �+Nvj�gvj �� (9)

where


Hvj�= 1−H 
U�Sj� f vj �=m− c′
( 
Hvj�vj

vj +VS

)

VS = v0 +
∑
i∈S

vi N vj �=

H ′vj �vj +VS�− 
Hvj�

vj +VS�
2

J vj �=

Hvj�VS + 
H ′vj �vj vj +VS�

vj +VS�
2

gvj �=m
∑
i∈S

vi −
∑
i∈S

c′
( 
Hvj�vi

vj +VS

)
vi�
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We wish to show that there exists at most one vj such that
hsi ′vj �= 0. It can be shown that J vj � > 0, Nvj� < 0, f vj � is
increasing and gvj � is decreasing. Unfortunately, neither J
nor N are monotone in vj , so we need additional results.

Because J vj � > 0 and Nvj� < 0, if hsi ′vj �= 0, then f vj �
and gvj � must have the same sign. The following statement
is stronger: for all �v1

j � v
2
j � such that v1

j < v2
j and h′v1

j � =
h′v2

j � = 0, it holds that f v1
j �f v2

j � > 0. (Proof by contra-
diction. Suppose f v1

j � < 0 and gv1
j � < 0, while f v2

j � > 0
and gv2

j � > 0: in that case, gv2
j � > gv1

j �, which contradicts
gvj � is decreasing. Suppose f v1

j � > 0 and gv1
j � > 0, while

f v2
j � < 0 and gv2

j � < 0: in that case, f v2
j � < f v1

j �, which
contradicts f vj � is increasing.) Given that the sign of f vj �
is the same for all vj such that hsi ′vj � = 0, there are two
cases to consider: either f vj � < 0 or f vj � > 0.
Case 1: f vj � < 0 and gvj � < 0. We have

hsi ′vj � =
e−%vj+VS�

vj +VS�
2

Dvj �f vj �−Kvj�gvj ��

= e−%vj+VS�

vj +VS�
2
Dvj�−f vj ��

[
gvj �

f vj �

Kvj �

Dvj �
− 1

]
� (10)

where

Dvj�=
(
e%vj+VS� − 1+ %vj

VS

vj +VS�

)
VS

Kvj �= e%vj+VS� − 1−%vj +VS��

Both Dvj� and Kvj� are positive and increasing in vj and
Kvj�/Dvj � is increasing. Furthermore, for f vj � < 0 and
gvj � < 0, gvj �/f vj � is increasing. Hence, there is at most
one vj such that hsi ′vj �= 0.
Case 2: f vj � ≥ 0 and gvj � ≥ 0. We are unable to

rewrite (10) in a multiplicative form of a positive term and
an increasing term in this case. However, it is sufficient to
show that for all vj such that hsi ′vj � = 0, then hsi ′′vj � > 0.
Differentiate

hsi ′′vj �

=mqsi ′′
j vj �− c′′qsi

j vj ��q
si ′
j vj ��

2 − c′qsi
j vj ��q

si ′′
j vj �

+∑
i∈S


mqsi ′′
i vj �−c′′qsi

i vj ��q
si ′
i vj ��

2−c′qsi
i vj ��q

si ′′
i vj ���

Because c·� is concave,

hsi ′′vj � ≥ mqsi ′′
j vj �− c′qsi

j vj ��q
si ′′
j vj �

+∑
i∈S


mqsi ′′
i vj �− c′qsi

i vj ��q
si ′′
i vj ��

= J̃ vj �f vj �+ �Nvj�gvj ��

where

J̃ vj �=
2VS
 
H ′vj �vj +VS�− 
Hvj��+ 
H ′′vj �vj vj +VS�

2

vj +VS�
3

�

�Nvj�=

 
H ′′vj �vj +VS�

2 − 2 
H ′vj �vj +VS�+ 2 
Hvj��

vj +VS�
3

�

Thus it is sufficient to show that

J̃ vj �f vj �+ �Nvj�gvj � > 0� (11)

From J̃ vj �≤ 0 (because 
H ′′vj �≤ 0�, f vj �≥ 0, gvj �≥ 0, and

hsi ′vj �= J vj �f vj �+Nvj�gvj �= 0�

(11) holds if
− �Nvj�

J̃ vj �
>

−Nvj�

J vj �
� (12)

Simplifying and rearranging terms in (12) yields

2− 2exp
−%vj +VS��−%vj +VS�

· exp
−%vj +VS��−%vj +VS� < 0�

which holds for all vj +Vs > 0.
Applying the similar process in the proof of Theorem 1

in van Ryzin and Mahajan (1999), the quasi-convexity of
hsivj � implies that the optimal assortment is always within
the set P . �

Proof of Theorem 6. We need to show that every assort-
ment S �= �1�2� � � � �n� leads to less profit than the full assort-
ment, which generates a positive profit. The expected profit
of assortment S is

�S� = ∑
i∈S

[
miq

so
i S�− cqsoi S��

]

= ∑
i∈S

[
miq

m
i S�1−H 
US��S��

− cqm
i S�1−H 
US�� S���

]
� (13)

From the search rule specified in Theorem 3, the search
threshold 
US� is monotonically decreasing in the search
cost b. Furthermore, limb→� 
US� = −� and limb→0


US� =
�. Therefore, from (13), there exists a sufficiently low b such
that H 
US��S� is close enough to 1 to ensure that �S� is
less than the full assortment profit for any S. �

Proof of Theorem 7. We show the result for the inde-
pendent assortment search model. To establish d0S

−� ≥
qm

0 S− � �vS��, it is sufficient to show

�v0S
−�/�viS

−�≥ �v0S�/�viS��

Recall that
diS�= �viS�

/∑
j∈S

�vjS��

so
�v0S�

�viS�
= d0S�

diS�
= qm

0 S�+∑
j∈S qm

j S�H 
U�S�

qm
i S�1−H 
U�S��

and we need to establish

qm
0 S−�+∑

j∈S− qm
j S−�H 
U�S−�

qm
i S−�1−H 
U�S−��

≥ qm
0 S�+∑

j∈S q
m
j S�H 
U�S�

qm
i S�1−H 
U�S��

�
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which can be, using (2) and the expressions for H �,
written as

v0 + 
∑

j∈S− vj�exp−%
∑

j=0� j∈S− vj�

1− exp−%
∑

j=0� j∈S− vj�

≥ v0 + 
∑

j∈S vj �exp−%
∑

j∈S vj �

1− exp−%
∑

j=0� j∈S vj �
� (14)

Define
Z4�= v0 + 4exp−%v0 + 4��

1− exp−%v0 + 4��
�

so we only need Z′4�≤ 0, where

Z′4� = (

1−%v0 + 4�− exp−%v0 + 4��

− 1−%�v0 + 4exp−%v0 + 4����exp−%4�
)

· (
1− exp−%v0 + 4���2
)−1

�

By Taylor expansion of exp−%v0 +4��, we have 1−%v0 +
4�− exp−%v0 +4��≤ 0 for any %v0 +4�≥ 0, so we indeed
have Z′4� ≤ 0. The proof for the overlapping assortment
search model is similar, except now % is a function of 
US�.
But from Theorem 3, 
US−� > 
US�, so % 
US−�� < % 
US��.
We see that Z4�%� is decreasing in %, so the condition (14)
is easier to satisfy in the overlapping assortment model.
A similar process demonstrates d0S

+�≤ qm
0 S+ � �vS��. �

Proof of Theorem 8. First, consider the independent
assortment search model. Suppose we have �x∗� > �xo�,
which because x∗ ∈ P and xo ∈ P , implies

∑
j∈xo vj <

∑
j∈x∗ vj .

Given �vx∗� from Theorem 7, the retailer overestimates the
expected profit of the assortment xo, i.e., �xo � �vx∗�� >
�xo�: because �iS� is convex in qsi

i S�, and the cannibal-
ization effect implies �ix

o� > 0 for all i ∈ xo, it follows that
for each variant in xo, its profit increases if its preference
is increased. Note that �x∗�=�x∗ � �vx∗��. However, com-
bining these results yields

�x∗� = �x∗ � �vx∗��

= max
x∈P

��x � �vx∗���≥�xo � �vx∗�� > �xo��

which contradicts that xo is the optimal assortment (i.e., we
know that �xo� > �x∗��. Hence it must be that �x∗� ≤ �xo�.
The proof for the overlapping assortment search model is
similar. Now the cannibalization effect is not guaranteed to
be present, so there is an additional condition that �ix

o� is
increasing for all qi ≥ qsoi xo�, which implies the estimates
�vx∗� overestimates the expected profit of the assortment xo,
i.e., �xo � �vx∗�� > �xo�. �
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