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Abstract Game theory has become an essential tool in the analysis of supply
chains with multiple agents, often with conflicting objectives. This
chapter surveys the applications of game theory to supply chain analy-
sis and outlines game-theoretic concepts that have potential for future
application. We discuss both non-cooperative and cooperative game
theory in static and dynamic settings. Careful attention is given to tech-
niques for demonstrating the existence and uniqueness of equilibrium in
non-cooperative games. A newsvendor game is employed throughout to
demonstrate the application of various tools.1
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1. Introduction

Game theory (hereafter GT) is a powerful tool for analyzing situa-
tions in which the decisions of multiple agents affect each agent’s payoff.
As such, GT deals with interactive optimization problems. While many
economists in the past few centuries have worked on what can be consid-
ered game-theoretic models, John von Neumann and Oskar Morgenstern
are formally credited as the fathers of modern game theory. Their clas-
sic book “Theory of Games and Economic Behavior”, von Neumann
and Morgenstern (1944), summarizes the basic concepts existing at that
time. GT has since enjoyed an explosion of developments, including the
concept of equilibrium by Nash (1950), games with imperfect informa-
tion by Kuhn (1953), cooperative games by Aumann (1959) and Shubik
(1962) and auctions by Vickrey (1961), to name just a few. Citing
Shubik (2002), “In the 50s ... game theory was looked upon as a curio-
sum not to be taken seriously by any behavioral scientist. By the late
1980s, game theory in the new industrial organization has taken over ...
game theory has proved its success in many disciplines.”

This chapter has two goals. In our experience with GT problems
we have found that many of the useful theoretical tools are spread over
dozens of papers and books, buried among other tools that are not as
useful in supply chain management (hereafter SCM). Hence, our first
goal is to construct a brief tutorial through which SCM researchers can
quickly locate GT tools and apply GT concepts. Due to the need for
short explanations, we omit all proofs, choosing to focus only on the intu-
ition behind the results we discuss. Our second goal is to provide ample
but by no means exhaustive references on the specific applications of
various GT techniques. These references offer an in-depth understand-
ing of an application where necessary. Finally, we intentionally do not
explore the implications of GT analysis on supply chain management,
but rather, we emphasize the means of conducting the analysis to keep
the exposition short.

1.1 Scope and relation to the literature

There are many GT concepts, but this chapter focuses on concepts
that are particularly relevant to SCM and, perhaps, already found their
applications in the literature. We dedicate a considerable amount of
space to the discussion of static non-cooperative, non-zero sum games,
the type of game which has received the most attention in the recent
SCM literature. We also discuss cooperative games, dynamic/differential
games and games with asymmetric/incomplete information. We omit
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discussion of important GT concepts covered in other chapters in this
book: auctions in Chapters 4 and 10; principal-agent models in Chapter
3; and bargaining in Chapter 11.

The material in this chapter was collected predominantly from Fried-
man (1986), Fudenberg and Tirole (1991), Moulin (1986), Myerson (1997),
Topkis (1998) and Vives (1999). Some previous surveys of GT models
in management science include Lucas’s (1971) survey of mathematical
theory of games, Feichtinger and Jorgensen’s (1983) survey of differential
games and Wang and Parlar’s (1989) survey of static models. A recent
survey by Li and Whang (2001) focuses on application of GT tools in
five specific OR/MS models.

2. Non-cooperative static games

In non-cooperative static games the players choose strategies simul-
taneously and are thereafter committed to their chosen strategies, i.e.,
these are simultaneous move, one-shot games. Non-cooperative GT
seeks a rational prediction of how the game will be played in practice.2

The solution concept for these games was formally introduced by John
Nash (1950) although some instances of using similar concepts date back
a couple of centuries.

2.1 Game setup

To break the ground for the section, we introduce basic GT notation.
A warning to the reader: to achieve brevity, we intentionally sacrifice
some precision in our presentation. See texts like Friedman (1986) and
Fudenberg and Tirole (1991) if more precision is required.

Throughout this chapter we represent games in the normal form. A
game in the normal form consists of (1) players indexed by i = 1, ..., n,
(2) strategies or more generally a set of strategies denoted by xi, i =
1, ..., n available to each player and (3) payoffs πi (x1, x2, ..., xn) , i =
1, ..., n received by each player. Each strategy is defined on a set
Xi, xi ∈ Xi, so we call the Cartesian product X1 × X2 × ... × Xn the
strategy space. Each player may have a unidimensional strategy or a
multi-dimensional strategy. In most SCM applications players have uni-
dimensional strategies, so we shall either explicitly or implicitly assume
unidimensional strategies throughout this chapter. Furthermore, with
the exception of one example, we will work with continuous strategies,
so the strategy space is Rn.
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A player’s strategy can be thought of as the complete instruction for
which actions to take in a game. For example, a player can give his or
her strategy to a person that has absolutely no knowledge of the player’s
payoff or preferences and that person should be able to use the instruc-
tions contained in the strategy to choose the actions the player desires.
As a result, each player’s set of feasible strategies must be independent
of the strategies chosen by the other players, i.e., the strategy choice
by one player is not allowed to limit the feasible strategies of another
player. (Otherwise the game is ill defined and any analytical results
obtained from the game are questionable.)

In the normal form players choose strategies simultaneously. Actions
are adopted after strategies are chosen and those actions correspond to
the chosen strategies.

As an alternative to the one-shot selection of strategies in the normal
form, a game can also be designed in the extensive form. With the
extensive form actions are chosen only as needed, so sequential choices
are possible. As a result, players may learn information between the
selection of actions, in particular, a player may learn which actions were
previously chosen or the outcome of a random event. Figure 2.1 pro-
vides an example of a simple extensive form game and its equivalent
normal form representation: there are two players, player I chooses from
{Left,Right} and player II chooses from {Up, Down}. In the extensive
form player I chooses first, then player II chooses after learning player
I’s choice. In the normal form they choose simultaneously. The key
distinction between normal and extensive form games is that in the nor-
mal form a player is able to commit to all future decisions. We later
show that this additional commitment power may influence the set of
plausible equilibria.

A player can choose a particular strategy or a player can choose to
randomly select from among a set of strategies. In the former case the
player is said to choose a pure strategy whereas in the latter case the
player chooses a mixed strategy. There are situations in economics and
marketing that have used mixed strategies: see, e.g., Varian (1980) for
search models and Lal (1990) for promotion models. However, mixed
strategies have not been applied in SCM, in part because it is not clear
how a manager would actually implement a mixed strategy. For exam-
ple, it seems unreasonable to suggest that a manager should “flip a coin”
among various capacity levels. Fortunately, mixed strategy equilibria
do not exist in games with a unique pure strategy equilibrium. Hence,
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Figure 2.1. Extensive vs normal form game representation.

in those games attention can be restricted to pure strategies without loss
of generality. Therefore, in the remainder of this chapter we consider
only pure strategies.

In a non-cooperative game the players are unable to make binding
commitments before choosing their strategies. In a cooperative game
players are able to make binding commitments. Hence, in a cooperative
game players can make side-payments and form coalitions. We begin
our analysis with non-cooperative static games.
In all sections, except the last one, we work with the games of com-

plete information, i.e., the players’ strategies and payoffs are common
knowledge to all players.

As a practical example throughout this chapter, we utilize the clas-
sic newsvendor problem transformed into a game. In the absence of
competition each newsvendor buys Q units of a single product at the
beginning of a single selling season. Demand during the season is a
random variable D with distribution function FD and density function
fD. Each unit is purchased for c and sold on the market for r > c. The
newsvendor solves the following optimization problem

max
Q

π = max
Q
ED [rmin (D,Q)− cQ] ,

with the unique solution

Q∗ = F−1D

µ
r − c
r

¶
.
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Goodwill penalty costs and salvage revenues can easily be incorporated
into the analysis, but for our needs we normalized them out.

Now consider the GT version of the newsvendor problem with two
retailers competing on product availability. Parlar (1988) was the first
to analyze this problem, which is also one of the first articles modeling
inventory management in a GT framework. It is useful to consider only
the two-player version of this game because then graphical analysis and
interpretations are feasible. Denote the two players by subscripts i and
j, their strategies (in this case stocking quantities) by Qi, Qj and their
payoffs by πi, πj .

We introduce interdependence of the players’ payoffs by assuming the
two newsvendors sell the same product. As a result, if retailer i is out
of stock, all unsatisfied customers try to buy the product at retailer j
instead. Hence, retailer i’s total demand is Di+(Dj−Qj)+ : the sum of
his own demand and the demand from customers not satisfied by retailer
j. Payoffs to the two players are then

πi (Qi, Qj) = ED
h
rimin

³
Di + (Dj −Qj)+ , Qi

´
− ciQi

i
, i, j = 1, 2.

2.2 Best response functions and the equilibrium
of the game

We are ready for the first important GT concept: best response func-
tions.

Definition 1. Given an n−player game, player i’s best response
(function) to the strategies x−i of the other players is the strategy x∗i
that maximizes player i0s payoff πi(xi, x−i):

x∗i (x−i) = argmaxxi
πi(xi, x−i).

(x∗i (x−i) is probably better described as a correspondence rather than
a function, but we shall nevertheless call it a function with an under-
standing that we are interpreting the term “function” liberally.) If πi
is quasi-concave in xi the best response is uniquely defined by the first-
order conditions of the payoff functions. In the context of our competing
newsvendors example, the best response functions can be found by op-
timizing each player’s payoff functions w.r.t. the player’s own decision
variable Qi while taking the competitor’s strategy Qj as given. The
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resulting best response functions are

Q∗i (Qj) = F
−1
Di+(Dj−Qj)+

µ
ri − ci
ri

¶
, i, j = 1, 2.

Taken together, the two best response functions form a best response
mapping R2 → R2 or in the more general case Rn → Rn. Clearly, the
best response is the best player i can hope for given the decisions of
other players. Naturally, an outcome in which all players choose their
best responses is a candidate for the non-cooperative solution. Such an
outcome is called a Nash equilibrium (hereafter NE) of the game.

Definition 2. An outcome (x∗1, x∗2, ..., x∗n) is a Nash equilibrium of
the game if x∗i is a best response to x∗−i for all i = 1, 2, ..., n.

Going back to competing newsvendors, NE is characterized by solving
a system of best responses that translates into the system of first-order
conditions:

Q∗1(Q
∗
2) = F−1

D1+(D2−Q∗2)
+

µ
r1 − c1
r1

¶
,

Q∗2(Q
∗
1) = F−1

D2+(D1−Q∗1)
+

µ
r2 − c2
r2

¶
.

When analyzing games with two players it is often helpful to graph the
best response functions to gain intuition. Best responses are typically
defined implicitly through the first-order conditions, which makes analy-
sis difficult. Nevertheless, we can gain intuition by finding out how each
player reacts to an increase in the stocking quantity by the other player
(i.e., ∂Q∗i (Qj)/ ∂Qj) through employing implicit differentiation as fol-
lows:

∂Q∗i (Qj)
∂Qj

= −
∂2πi

∂Qi∂Qj

∂2πi
∂Q2i

= −rifDi+(Dj−Qj)+|Dj>Qj (Qi) Pr (Dj > Qj)
rifDi+(Dj−Qj)+ (Qi)

< 0.

(2.1)
The expression says that the slopes of the best response functions are
negative, which implies an intuitive result that each player’s best re-
sponse is monotonically decreasing in the other player’s strategy. Fig-
ure 2.2 presents this result for the symmetric newsvendor game. The
equilibrium is located on the intersection of the best responses and we
also see that the best responses are, indeed, decreasing.

One way to think about a NE is as a fixed point of the best response
mapping Rn → Rn. Indeed, according to the definition, NE must
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satisfy the system of equations ∂πi/∂xi = 0, all i. Recall that a fixed
point x of mapping f(x), Rn → Rn is any x such that f(x) = x. Define
fi(x1, ..., xn) = ∂πi/∂xi + xi. By the definition of a fixed point,

fi(x
∗
1, ..., x

∗
n) = x

∗
i = ∂πi(x

∗
1, ..., x

∗
n)/∂xi+x

∗
i → ∂πi(x

∗
1, ..., x

∗
n)/∂xi = 0, all i.

Hence, x∗ solves the first-order conditions if and only if it is a fixed point
of mapping f(x) defined above.
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Q2 )( 1
*
2 QQ
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Figure 2.2. Best responses in the newsvendor game.

The concept of NE is intuitively appealing. Indeed, it is a self-fulfilling
prophecy. To explain, suppose a player were to guess the strategies of
the other players. A guess would be consistent with payoff maximiza-
tion and therefore would be reasonable only if it presumes that strategies
are chosen to maximize every player’s payoff given the chosen strategies.
In other words, with any set of strategies that is not a NE there exists
at least one player that is choosing a non payoff maximizing strategy.
Moreover, the NE has a self-enforcing property: no player wants to uni-
laterally deviate from it since such behavior would lead to lower payoffs.
Hence NE seems to be the necessary condition for the prediction of any
rational behavior by players3.

While attractive, numerous criticisms of the NE concept exist. Two
particularly vexing problems are the non-existence of equilibrium and
the multiplicity of equilibria. Without the existence of an equilibrium,
little can be said regarding the likely outcome of the game. If there are
multiple equilibria, then it is not clear which one will be the outcome.
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Indeed, it is possible the outcome is not even an equilibrium because
the players may choose strategies from different equilibria. For exam-
ple, consider the normal form game in Figure 2.1. There are two Nash
equilibria in that game {Left,Up} and {Right,Down}: each is a best
response to the other player’s strategy. However, because the players
choose their strategies simultaneously it is possible that player I chooses
Right (the 2nd equilibrium) while player II choose Up (the 1st equilib-
rium), which results in {Right,Up}, the worst outcome for both players.

In some situations it is possible to rationalize away some equilibria via
a refinement of the NE concept: e.g., trembling hand perfect equilibrium
by Selten (1975), sequential equilibrium by Kreps and Wilson (1982)
and proper equilibria by Myerson (1997). These refinements eliminate
equilibria that are based on non-credible threats, i.e., threats of future
actions that would not actually be adopted if the sequence of events in
the game led to a point in the game in which those actions could be
taken. The extensive form game in Figure 2.1 illustrates this point.
{Left, Up} is a Nash equilibrium (just as it is in the comparable normal
form game) because each player is choosing a best response to the other
player’s strategy: Left is optimal for player I given player II plans to
play Up and player II is indifferent between Up or Down given player I
chooses Left. But if player I were to choose Right, then it is unreason-
able to assume player II would actually follow through with UP: UP
yields a payoff of 0 while Down yields a payoff of 2. Hence, the {Left,
Up} equilibrium is supported by a non-credible threat by player II to
play Up. Although these refinements are viewed as extremely impor-
tant in economics (Selten was awarded the Nobel prize for his work), the
need for these refinements has not yet materialized in the SCM litera-
ture. But that may change as more work is done on sequential/dynamic
games.

An interesting feature of the NE concept is that the system optimal
solution (i.e., a solution that maximizes the sum of players’ payoffs) need
not be a NE. Hence, decentralized decision making generally introduces
inefficiency in the supply chain. There are, however, some exceptions:
see Mahajan and van Ryzin (1999b) and Netessine and Zhang (2003)
for situations in which competition may result in the system-optimal
performance. In fact, a NE may not even be on the Pareto frontier: the
set of strategies such that each player can be made better off only if some
other player is made worse off. A set of strategies is Pareto optimal if
they are on the Pareto frontier; otherwise a set of strategies is Pareto
inferior. Hence, a NE can be Pareto inferior. The Prisoner’s Dilemma
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game (see Fudenberg and Tirole 1991) is the classic example of this: only
one pair of strategies when both players “cooperate” is Pareto optimal,
and the unique Nash equilibrium is when both players “defect” happens
to be Pareto inferior. A large body of the SCM literature deals with
ways to align the incentives of competitors to achieve optimality. See
Cachon (2002) for a comprehensive survey and taxonomy. See Cachon
(2003) for a supply chain analysis that makes extensive use of the Pareto
optimal concept.

2.3 Existence of equilibrium

A NE is a solution to a system of n first-order conditions, so an equi-
librium may not exist. Non-existence of an equilibrium is potentially a
conceptual problem since in this case it is not clear what the outcome
of the game will be. However, in many games a NE does exist and
there are some reasonably simple ways to show that at least one NE
exists. As already mentioned, a NE is a fixed point of the best response
mapping. Hence fixed point theorems can be used to establish the ex-
istence of an equilibrium. There are three key fixed point theorems,
named after their creators: Brouwer, Kakutani and Tarski, see Border
(1999) for details and references. However, direct application of fixed
point theorems is somewhat inconvenient and hence generally not done.
For exceptions see Lederer and Li (1997) and Majumder and Groenevelt
(2001a) for existence proofs that are based on Brouwer’s fixed point the-
orem. Alternative methods, derived from these fixed point theorems,
have been developed. The simplest and the most widely used technique
for demonstrating the existence of NE is through verifying concavity of
the players’ payoffs.

Theorem 1 (Debreu 1952). Suppose that for each player the strategy
space is compact4 and convex and the payoff function is continuous and
quasi-concave with respect to each player’s own strategy. Then there ex-
ists at least one pure strategy NE in the game.

If the game is symmetric in a sense that the players’ strategies and
payoffs are identical, one would imagine that a symmetric solution should
exist. This is indeed the case, as the next Theorem ascertains.

Theorem 2. Suppose that a game is symmetric and for each player
the strategy space is compact and convex and the payoff function is con-
tinuous and quasi-concave with respect to each player’s own strategy.
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Figure 2.3. Example with a bi-modal objective function.

Then there exists at least one symmetric pure strategy NE in the game.

To gain some intuition about why non-quasi-concave payoffs may lead
to non-existence of NE, suppose that in a two-player game, player 2 has
a bi-modal objective function with two local maxima. Furthermore,
suppose that a small change in the strategy of player 1 leads to a shift
of the global maximum for player 2 from one local maximum to another.
To be more specific, let us say that at x01 the global maximum x∗2(x01)
is on the left (Figure 2.3 left) and at x001 the global maximum x∗2(x002)
is on the right (Figure 2.3 right). Hence, a small change in x1 from
x01 to x001 induces a jump in the best response of player 2, x∗2. The
resulting best response mapping is presented in Figure 2.4 and there is
no NE in pure strategies in this game. In other words, best response
functions do not intersect anywhere. As a more specific example, see
Netessine and Shumsky (2001) for an extension of the newsvendor game
to the situation in which product inventory is sold at two different prices;
such a game may not have a NE since both players’ objectives may be
bimodal. Furthermore, Cachon and Harker (2002) demonstrate that
pure strategy NE may not exist in two other important settings: two
retailers competing with cost functions described by the Economic Order
Quantity (EOQ) or two service providers competing with service times
described by the M/M/1 queuing model.
The assumption of a compact strategy space may seem restrictive.

For example, in the newsvendor game the strategy space R2+ is not
bounded from above. However, we could easily bound it with some
large enough finite number to represent the upper bound on the de-
mand distribution. That bound would not impact any of the choices,
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Figure 2.4. Non-existence of NE.

and therefore the transformed game behaves just as the original game
with an unbounded strategy space. (However, that bound cannot de-
pend on any player’s strategy choice.)

To continue with the newsvendor game analysis, it is easy to verify
that the newsvendor’s objective function is concave and hence quasi-
concave w.r.t. the stocking quantity by taking the second derivative.
Hence the conditions of Theorem 1 are satisfied and a NE exists. There
are virtually dozens of papers employing Theorem 1. See, for example,
Lippman and McCardle (1997) for the proof involving quasi-concavity,
Mahajan and van Ryzin (1999a) and Netessine et al. (2002) for the
proofs involving concavity. Clearly, quasi-concavity of each player’s
objective function only implies uniqueness of the best response but does
not imply a unique NE. One can easily envision a situation where unique
best response functions cross more than once so that there are multiple
equilibria (see Figure 2.5).
If quasi-concavity of the players’ payoffs cannot be verified, there is

an alternative existence proof that relies on Tarski’s (1955) fixed point
theorem and involves the notion of supermodular games. The theory of
supermodular games is a relatively recent development introduced and
advanced by Topkis (1998).
Definition 3. A twice continuously differentiable payoff function

πi(x1, ..., xn) is supermodular (submodular) iff ∂2πi/∂xi∂xj ≥ 0 (≤ 0)
for all x and all j 6= i. The game is called supermodular if the players’
payoffs are supermodular.
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Figure 2.5. Non-uniqueness of the equilibrium.

Supermodularity essentially means complementarity between any two
strategies and is not linked directly to either convexity, concavity or even
continuity. (This is a significant advantage when forced to work with
discrete strategies, e.g., Cachon 2001.) However, similar to concav-
ity/convexity, supermodularity/submodularity is preserved under max-
imization, limits and addition and hence under expectation/integration
signs, an important feature in stochastic SCM models. While in most
situations the positive sign of the second derivative can be used to ver-
ify supermodularity (using Definition 3), sometimes it is necessary to
utilize supermodularity-preserving transformations to show that payoffs
are supermodular. Topkis (1998) provides a variety of ways to verify
that the function is supermodular and some of his results are used in
Cachon (2001), Cachon and Lariviere (1999), Netessine and Shumsky
(2001) and Netessine and Rudi (2003). The following theorem follows
directly from Tarski’s fixed point result and provides another tool to
show existence of NE in non-cooperative games:

Theorem 3. In a supermodular game there exists at least one NE.

Coming back to the competitive newsvendors example, recall that the
second-order cross-partial derivative was found to be

∂2πi
∂Qi∂Qj

= −rifDi+(Dj−Qj)+|Dj>Qj (Qi) Pr (Dj > Qj) < 0,

so that the newsvendor game is submodular and hence existence of equi-
librium cannot be assured. However, a standard trick is to re-define the
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ordering of the players’ strategies. Let y = −Qj so that
∂2πi
∂Qi∂y

= rifDi+(Dj+y)+|Dj>Qj (Qi) Pr (Dj > −y) > 0,

and the game becomes supermodular in (xi, y) so existence of NE is
assured. Notice that we do not change either payoffs or the structure
of the game, we only alter the ordering of one player’s strategy space.
Obviously, this trick only works in two-player games, see also Lippman
and McCardle (1997) for the analysis of the more general version of the
newsvendor game using a similar transformation. Hence, we can state
that in general NE exists in games with decreasing best responses (sub-
modular games) with two players. This argument can be generalized
slightly in two ways that we mention briefly, see Vives (1999) for details.
One way is to consider an n−player game where best responses are func-
tions of aggregate actions of all other players, that is, x∗i = x∗i

³P
j 6=i xj

´
.

If best responses in such a game are decreasing, then NE exists. Another

generalization is to consider the same game with x∗i = x∗i
³P

j 6=i xj
´
but

require symmetry. In such a game, existence can be shown even with
non-monotone best responses provided that there are only jumps up but
on intervals between jumps best responses can be increasing or decreas-
ing.

We now step back to discuss the intuition behind the supermodular-
ity results. Roughly speaking, Tarski’s fixed point theorem only requires
best response mappings to be non-decreasing for the existence of equi-
librium and does not require quasi-concavity of the players’ payoffs and
allows for jumps in best responses. While it may be hard to believe that
non-decreasing best responses is the only requirement for the existence
of a NE, consider once again the simplest form of a single-dimensional
equilibrium as a solution to the fixed point mapping x = f(x) on the
compact set. It is easy to verify after a few attempts that if f(x) is
non-decreasing but possibly with jumps up then it is not possible to
derive a situation without an equilibrium. However, when f(x) jumps
down, non-existence is possible (see Figure 2.6).

Hence, increasing best response functions is the only major require-
ment for an equilibrium to exist; players’ objectives do not have to be
quasi-concave or even continuous. However, to describe an existence
theorem with non-continuous payoffs requires the introduction of terms
and definitions from lattice theory. As a result, we restricted ourselves
to the assumption of continuous payoff functions, and in particular, to
twice-differentiable payoff functions.
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Although it is now clear why increasing best responses ensure exis-
tence of an equilibrium, it is not immediately obvious why Definition 3
provides a sufficient condition, given that it only concerns the sign of
the second-order cross-partial derivative. To see this connection, con-
sider separately the continuous and the dis-continuous parts of the best
response x∗i (xj). When the best response is continuous, we can apply
the Implicit Function Theorem to find its slope as follows

∂x∗i
∂xj

= −
∂2πi

∂xi∂xj

∂2πi
∂x2i

.

Clearly, if x∗i is the best response, it must be the case that ∂2πi/∂x2i < 0
or else it would not be the best response. Hence, for the slope to be
positive it is sufficient to have ∂2πi/∂xi∂xj > 0 which is what Definition
3 provides. This reasoning does not, however, work at discontinuities in
best responses since the Implicit Function Theorem cannot be applied.
To show that only jumps up are possible if ∂2πi/∂xi∂xj > 0 holds, con-
sider a situation in which there is a jump down in the best response. As
one can recall, jumps in best responses happen when the objective func-
tion is bi-modal (or more generally multi-modal). For example, consider

a specific point x#j and let x1i

³
x#j

´
< x2i

³
x#j

´
be two distinct points

at which first-order conditions hold (i.e., the objective function πi is

bi-modal). Further, suppose πi
³
x1i

³
x#j

´
, x#j

´
< πi

³
x2i

³
x#j

´
, x#j

´
but

πi
³
x1i

³
x#j + ε

´
, x#j + ε

´
> πi

³
x2i

³
x#j + ε

´
, x#j + ε

´
. That is, initially

x2i

³
x#j

´
is a global maximum but as we increase x#j infinitesimally, there
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is a jump down and a smaller x1i

³
x#j + ε

´
becomes the global maximum.

For this to be the case, it must be that

∂πi
³
x1i

³
x#j

´
, x#j

´
∂xj

>
∂πi

³
x2i

³
x#j

´
, x#j

´
∂xj

,

or, in words, the objective function rises faster at
³
x1i

³
x#j

´
, x#j

´
than

at
³
x2i

³
x#j

´
, x#j

´
. This, however, can only happen if ∂2πi/∂xi∂xj < 0

at least somewhere on the interval
h
x1i

³
x#j

´
, x2i

³
x#j

´i
which is a con-

tradiction. Hence, if ∂2πi/∂xi∂xj > 0 holds then only jumps up in the
best response are possible.

2.4 Uniqueness of equilibrium

From the perspective of generating qualitative insights, it is quite
useful to have a game with a unique NE. If there is only one equilibrium,
then one can characterize equilibrium actions without much ambiguity.
Unfortunately, demonstrating uniqueness is generally much harder than
demonstrating existence of equilibrium. This section provides several
methods for proving uniqueness. No single method dominates; all may
have to be tried to find the one that works. Furthermore, one should be
careful to recognize that these methods assume existence, i.e., existence
of NE must be shown separately. Finally, it is worth pointing out that
uniqueness results are only available for games with continuous best
response functions and hence there are no general methods to prove
uniqueness of NE in supermodular games.

2.4.1 Method 1. Algebraic argument. In some rather
fortunate situations one can ascertain that the solution is unique by
simply looking at the optimality conditions. For example, in a two-
player game the optimality condition of one of the players may have a
unique closed-form solution that does not depend on the other player’s
strategy and, given the solution for one player, the optimality condition
for the second player can be solved uniquely. See Hall and Porteus
(2000) and Netessine and Rudi (2001) for examples. In other cases one
can assure uniqueness by analyzing geometrical properties of the best
response functions and arguing that they intersect only once. Of course,
this is only feasible in two-player games. See Parlar (1988) for a proof
of uniqueness in the two-player newsvendor game and Majumder and
Groenevelt (2001b) for a supply chain game with competition in reverse
logistics. However, in most situations these geometrical properties are
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x(1)x(2) x(3) 

x
f(x) 

 

x(1)x(2) x(3) 

x f(x)

Figure 2.7. Converging (left) and diverging (right) iterations.

also implied by the more formal arguments stated below. Finally, it
may be possible to use a contradiction argument: assume that there is
more than one equilibrium and prove that such an assumption leads to
a contradiction, as in Lederer and Li (1997).

2.4.2 Method 2. Contraction mapping argument. Al-
though the most restrictive among all methods, the contraction mapping
argument is the most widely known and is the most frequently used in
the literature because it is the easiest to verify. The argument is based
on showing that the best response mapping is a contraction, which then
implies the mapping has a unique fixed point. To illustrate the concept
of a contraction mapping, suppose we would like to find a solution to
the following fixed point equation:

x = f(x), x ∈ R1.
To do so, a sequence of values is generated by an iterative algorithm,

{x(1), x(2), x(3), ...} where x(1) is arbitrarily picked and x(t) = f
³
x(t−1)

´
.

The hope is that this sequence converges to a unique fixed point. It
does so if, roughly speaking, each step in the sequence moves closer to
the fixed point. One could verify that if |f 0(x)| < 1 in some vicinity of
x∗ then such an iterative algorithm converges to a unique x∗ = f (x∗) .
Otherwise, the algorithm diverges. Graphically, the equilibrium point is
located on the intersection of two functions: x and f(x). The iterative
algorithm is presented in Figure 2.7.
The iterative scheme in Figure 2.7 left is a contraction mapping: it

approaches the equilibrium after every iteration.
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Definition 4. Mapping f(x), Rn → Rn is a contraction iff kf(x1)− f(x2)k ≤
α kx1 − x2k, ∀x1, x2,α < 1.

In words, the application of a contraction mapping to any two points
strictly reduces (i.e., α = 1 does not work) the distance between these
points. The norm in the definition can be any norm, i.e., the mapping
can be a contraction in one norm and not a contraction in another norm.

Theorem 4. If the best response mapping is a contraction on the
entire strategy space, there is a unique NE in the game.

One can think of a contraction mapping in terms of iterative play:
player 1 selects some strategy, then player 2 selects a strategy based on
the decision by player 1, etc. If the best response mapping is a contrac-
tion, the NE obtained as a result of such iterative play is stable but the
opposite is not necessarily true, i.e., no matter where the game starts,
the final outcome is the same. See also Moulin (1986) for an extensive
treatment of stable equilibria.

A major restriction in Theorem 4 is that the contraction mapping con-
dition must be satisfied everywhere. This assumption is quite restrictive
because the best response mapping may be a contraction locally, say in
some not necessarily small ε−neighborhood of the equilibrium but not
outside of it. Hence, if iterative play starts in this ε−neighborhood,
then it converges to the equilibrium, but starting outside that neighbor-
hood may not lead to the equilibrium (even if the equilibrium is unique).
Even though one may wish to argue that it is reasonable for the players
to start iterative play some place close to the equilibrium, formalization
of such an argument is rather difficult. Hence, we must impose the con-
dition that the entire strategy space be considered. See Stidham (1992)
for an interesting discussion of stability issues in a queuing system.

While Theorem 4 is a starting point towards a method for demon-
strating uniqueness, it does not actually explain how to validate that
a best reply mapping is a contraction. Suppose we have a game with
n players each endowed with the strategy xi and we have obtained the
best response functions for all players, xi = fi(x−i). We can then define
the following matrix of derivatives of the best response functions:

A =

¯̄̄̄
¯̄̄̄ 0 ∂f1

∂x2
... ∂f1

∂xn
∂f2
∂x1

0 ... ∂f2
∂x2

... ... ... ...
∂fn
∂x1

∂fn
∂x2

... 0

¯̄̄̄
¯̄̄̄ .
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Further, denote by ρ(A) the spectral radius of matrix A and recall that
the spectral radius of a matrix is equal to the largest absolute eigenvalue
ρ(A) = {max |λ| : Ax = λx, x 6= 0}, see Horn and Johnson (1996).

Theorem 5. The mapping f(x), Rn → Rn is a contraction if and
only if ρ(A) < 1 everywhere.

Theorem 5 is simply an extension of the iterative convergence argu-
ment we used above into multiple dimensions, and the spectral radius
rule is an extension of the requirement |f 0(x)| < 1. Still, Theorem 5
is not as useful as we would like it to be: calculating eigenvalues of a
matrix is not trivial. Instead, it is often helpful to use the fact that
the largest eigenvalue and hence the spectral radius is bounded above
by any of the matrix norms, see Horn and Johnson (1996). So instead
of working with the spectral radius itself, it is sufficient to show kAk < 1
for any one matrix norm. The most convenient matrix norms are the
maximum column-sum and the maximum row-sum norms (see Horn and
Johnson 1996 for other matrix norms). To use either of these norms to
verify the contraction mapping, it is sufficient to verify that no column
sum or no row sum of matrix A exceeds one,

nX
i=1

¯̄̄̄
∂fk
∂xi

¯̄̄̄
< 1 , or

nX
i=1

¯̄̄̄
∂fi
∂xk

¯̄̄̄
< 1, ∀k.

Netessine and Rudi (2003) used the contraction mapping argument in
this most general form in the multiple-player variant of the newsvendor
game described above.

A challenge associated with the contraction mapping argument is find-
ing best response functions because in most SC models best responses
cannot be found explicitly. Fortunately, Theorem 5 only requires the
derivatives of the best response functions, which can be done using the
Implicit Function Theorem (from now on, IFT, see Bertsekas 1999).
Using the IFT, Theorem 5 can be re-stated as

nX
i=1,i6=k

¯̄̄̄
¯ ∂2πk
∂xk∂xi

¯̄̄̄
¯ <

¯̄̄̄
¯∂2πk∂x2k

¯̄̄̄
¯ , ∀k. (2.2)

This condition is also known as “diagonal dominance” because the diago-
nal of the matrix of second derivatives, also called the Hessian, dominates
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the off-diagonal entries:

H =

¯̄̄̄
¯̄̄̄
¯̄

∂2π1
∂x2

1

∂2π1
∂x1∂x2

... ∂2π1
∂x1∂xn

∂2π2
∂x2∂x1

∂2π2
∂x2

2

... ∂2π1
∂x2∂xn

... ... ... ...
∂2πn

∂xn∂x1

∂2πn
∂xn∂x2

... ∂2πn
∂x2n

¯̄̄̄
¯̄̄̄
¯̄ . (2.3)

Contraction mapping conditions in the diagonal dominance form have
been used extensively by Bernstein and Federgruen (2000, 2001a, 2001c,
2003). As has been noted by Bernstein and Federgruen (2002), many
standard economic demand models satisfy this condition.

In games with only two players the condition in Theorem 5 simplifies
to ¯̄̄̄

∂f1
∂x2

¯̄̄̄
< 1 and

¯̄̄̄
∂f2
∂x1

¯̄̄̄
< 1, (2.4)

i.e., the slopes of the best response functions are less than one. This
condition is especially intuitive if we use the graphical illustration (Fig-
ure 2.2). Given that the slope of each best response function is less
than one everywhere, if they cross at one point then they cannot cross
at an additional point. A contraction mapping argument in this form
was used by van Mieghem (1999) and by Rudi et al. (2001).

Returning to the newsvendor game example, we have found that the
slopes of the best response functions are¯̄̄̄

¯∂Q∗i (Qj)∂Qj

¯̄̄̄
¯ =

¯̄̄̄
¯fDi+(Dj−Qj)+|Dj>Qj (Qi) Pr (Dj > Qj)fDi+(Dj−Qj)+ (Qi)

¯̄̄̄
¯ < 1.

Hence, the best response mapping in the newsvendor game is a contrac-
tion and the game has a unique and stable NE.

2.4.3 Method 3. Univalent mapping argument. Another
method for demonstrating uniqueness of equilibrium is based on verify-
ing that the best response mapping is one-to-one: that is, if f(x) is a
Rn → Rn mapping, then y = f(x) implies that for all x0 6= x, y 6= f(x0).
Clearly, if the best response mapping is one-to-one then there can be at
most one fixed point of such mapping. To make an analogy, recall that,
if the equilibrium is interior5, the NE is a solution to the system of the
first-order conditions: ∂πi/ ∂xi = 0, ∀i,which defines the best response
mapping. If this mapping is single-dimensional R1 → R1 then it is quite
clear that the condition sufficient for the mapping to be one-to-one is
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quasi-concavity of πi. Similarly, for the R
n → Rn mapping to be one-

to-one we require quasi-concavity of the mapping which translates into
quasi-definiteness of the Hessian:

Theorem 6. Suppose the strategy space of the game is convex and all
equilibria are interior. Then if the determinant |H| is negative quasi-
definite (i.e., if the matrix H +HT is negative definite) on the players’
strategy set, there is a unique NE.

Proof of this result can be found in Gale and Nikaido (1965) and
some further developments that deal with boundary equilibria are found
in Rosen (1965). Notice that the univalent mapping argument is some-
what weaker than the contraction mapping argument. Indeed, the re-
statement (2.2) of the contraction mapping theorem directly implies uni-
valence since the dominant diagonal assures us that H is negative def-
inite. Hence, it is negative quasi-definite. It immediately follows that
the newsvendor game satisfies the univalence theorem. However, if some
other matrix norm is used, the relationship between the two theorems is
not that specific. In the case of just two players the univalence theorem
can be written as, according to Moulin (1986),

¯̄̄̄
¯ ∂2π2
∂x2∂x1

+
∂2π1

∂x1∂x2

¯̄̄̄
¯ ≤ 2

s¯̄̄̄
∂2π1
∂x21

· ∂
2π2
∂x22

¯̄̄̄
, ∀x1, x2.

2.4.4 Method 4. Index theory approach.. This method is
based on the Poincare-Hopf index theorem found in differential topol-
ogy, see, e.g., Gillemin and Pollack (1974). Similarly to the univalence
mapping approach, it requires a certain sign from the Hessian, but this
requirement need hold only at the equilibrium point.

Theorem 7. Suppose the strategy space of the game is convex and all
payoff functions are quasi-concave. Then if (−1)n |H| is positive when-
ever ∂πi/∂xi = 0, all i, there is a unique NE.

Observe that the condition (−1)n |H| is trivially satisfied if |H| is
negative definite which is implied by the condition (2.2) of contraction
mapping, i.e., this method is also somewhat weaker than the contraction
mapping argument. Moreover, the index theory condition need only
hold at the equilibrium. This makes it the most general, but also the
hardest to apply. To gain some intuition about why the index theory
method works, consider the two-player game. The condition of Theorem
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7 simplifies to¯̄̄̄
¯

∂2π1
∂x2

1

∂2π1
∂x1∂x2

∂2π2
∂x2∂x1

∂2π2
∂x2

2

¯̄̄̄
¯ > 0 ∀x1, x2 : ∂π1∂x1

= 0,
∂π2
∂x2

= 0,

which can be interpreted as meaning the multiplication of the slopes of
best response functions should not exceed one at the equilibrium:

∂f1
∂x2

∂f2
∂x1

< 1 at x∗1, x
∗
2. (2.5)

As with the contraction mapping approach, with two players the The-
orem becomes easy to visualize. Suppose we have found best response
functions x∗1 = f1(x2) and x

∗
2 = f2(x1) as in Figure 2.2. Find an in-

verse function x2 = f
−1
1 (x1) and construct an auxiliary function g(x1) =

f−11 (x1)−f2(x1) that measures the distance between two best responses.
It remains to show that g(x1) crosses zero only once since this would di-
rectly imply a single crossing point of f1(x1) and f2(x2). Suppose we
could show that every time g(x1) crosses zero, it does so from below.
If that is the case, we are assured there is only a single crossing: it is
impossible for a continuous function to cross zero more than once from
below because it would also have to cross zero from above somewhere.
It can be shown that the function g(x1) crosses zero only from below if
the slope of g(x1) at the crossing point is positive as follows

∂g(x1)

∂x1
=

∂f−11 (x1)

∂x1
− ∂f2(x1)

∂x1
=

1
∂f2(x2)
∂x2

− ∂f2(x1)

∂x1
> 0,

which holds if (2.5) holds. Hence, in a two-player game condition (2.5)
is sufficient for the uniqueness of the NE. Note that condition (2.5)
trivially holds in the newsvendor game since each slope is less than one
and hence the multiplication of slopes is less than one as well everywhere.
Index theory has been used by Netessine and Rudi (2001b) to show
uniqueness of the NE in a retailer-wholesaler game when both parties
stock inventory and sell directly to consumers and by Cachon and Kok
(2002) and Cachon and Zipkin (1999).

2.5 Multiple equilibria

Many games are just not blessed with a unique equilibrium. The
next best situation is to have a few equilibria. The worst situation is
either to have an infinite number of equilibria or no equilibrium at all.
The obvious problem with multiple equilibria is that the players may not
know which equilibrium will prevail. Hence, it is entirely possible that
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a non-equilibrium outcome results because one player plays one equilib-
rium strategy while a second player chooses a strategy associated with
another equilibrium. However, if a game is repeated, then it is possible
that the players eventually find themselves in one particular equilibrium.
Furthermore, that equilibrium may not be the most desirable one.

If one does not want to acknowledge the possibility of multiple out-
comes due to multiple equilibria, one could argue that one equilibrium
is more reasonable than the others. For example, there may exist only
one symmetric equilibrium and one may be willing to argue that a sym-
metric equilibrium is more focal than an asymmetric equilibrium. (See
Mahajan and van Ryzin 1999a for an example). In addition, it is gen-
erally not too difficult to demonstrate the uniqueness of a symmetric
equilibrium. If the players have unidimensional strategies, then the
system of n first-order conditions reduces to a single equation and one
need only show that there is a unique solution to that equation to prove
the symmetric equilibrium is unique. If the players have m-dimensional
strategies, m > 1, then finding a symmetric equilibrium reduces to de-
termining whether a system of m equations has a unique solution (easier
than the original system, but still challenging).

An alternative method to rule out some equilibria is to focus only on
the Pareto optimal equilibrium, of which there may be only one. For ex-
ample, in supermodular games the equilibria are Pareto rankable under
an additional condition that each players’ objective function is increas-
ing in other players’ strategies, i.e., there is a most preferred equilibrium
by every player and a least preferred equilibrium by every player. (See
Wang and Gerchak 2002 for an example). However, experimental ev-
idence exists that suggests players do not necessarily gravitate to the
Pareto optimal equilibrium as is demonstrated by Cachon and Camerer,
1996. Hence, caution is warranted with this argument.

2.6 Comparative statics in games

In GT models, just as in the non-competitive SCM models, many
of the managerial insights and results are obtained through compara-
tive statics such as monotonicity of the optimal decisions w.r.t. some
parameter of the game.

2.6.1 The Implicit Functions Theorem approach. This
approach works for both GT and single decision-maker applications as
will become evident from the statement of the next theorem.
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Theorem 9. Consider the system of equations

∂πi(x1, ..., xn, a)

∂xi
= 0, i = 1, ..., n,

defining x∗1, ..., x∗n as implicit functions of parameter a. If all derivatives
are continuous functions and the Hessian (2.3) evaluated at x∗1, ..., x∗n
is non-zero, then the function x∗(a), R1 → Rn is continuous on a ball
around x∗ and its derivatives are found as follows:

¯̄̄̄
¯̄̄̄

∂x∗1
∂a
∂x∗2
∂a

...
∂x∗n
∂a

¯̄̄̄
¯̄̄̄ = −

¯̄̄̄
¯̄̄̄
¯̄

∂2π1
∂x2

1

∂2π1
∂x1∂x2

... ∂2π1
∂x1∂xn

∂2π2
∂x2∂x1

∂2π2
∂x2

2

... ∂2π1
∂x2∂xn

... ... ... ...
∂2πn

∂xn∂x1

∂2πn
∂xn∂x2

... ∂2πn
∂x2n

¯̄̄̄
¯̄̄̄
¯̄
−1 ¯̄̄̄
¯̄̄̄

∂π1
∂x1∂a
∂π1

∂x2∂a

...
∂π1

∂xn∂a

¯̄̄̄
¯̄̄̄ . (2.6)

Since the IFT is covered in detail in many non-linear programming books
and its application to the GT problems is essentially the same, we do not
delve further into this matter. In many practical problems, if |H| 6= 0
then it is instrumental to multiply both sides of the expression (2.6) by
H−1. That is justified because the Hessian is assumed to have a non-zero
determinant to avoid the cumbersome task of inverting the matrix. The
resulting expression is a system of n linear equations which have a closed
form solution. See Netessine and Rudi (2001b) for such an application
of the IFT in a two-player game and Bernstein and Federgruen (2000)
in n−player games.

The solution to (2.6) in the case of two players is

∂x∗1
∂a

= −
∂2π1
∂x1∂a

∂2π2
∂x22
− ∂2π1

∂x1∂x2
∂2π2
∂x2∂a

|H| , (2.7)

∂x∗2
∂a

= −
∂2π1
∂x21

∂2π2
∂x2∂a

− ∂2π1
∂x1∂a

∂2π2
∂x2∂x1

|H| . (2.8)

Using our newsvendor game as an example, suppose we would like to
analyze sensitivity of the equilibrium solution to changes in r1 so let
a = r1. Notice that ∂π2/∂Q2∂r1 = 0 and also that the determinant of
the Hessian is positive. Both expressions in the numerator of (2.7) are
positive as well so that ∂Q∗1/∂r1 > 0. Further, the numerator of (2.8) is
negative so that ∂Q∗2/∂r1 < 0. Both results are intuitive.

Solving a system of n equations analytically is generally cumbersome
and one may have to use Kramer’s rule or analyze an inverse of H
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instead, see Bernstein and Federgruen (2000) for an example. The
only way to avoid this complication is to employ supermodular games
as described below. However, the IFT method has an advantage that
is not enjoyed by supermodular games: it can handle constraints of any
form. That is, any constraint on the players’ strategy spaces of the
form gi(xi) ≤ 0 or gi(xi) = 0 can be added to the objective function by
forming a Lagrangian:

Li(x1, ..., xn,λi) = πi(x1, ..., xn)− λigi(xi).

All analysis can then be carried through the same way as before with the
only addition being that the Lagrange multiplier λi becomes a decision
variable. For example, let’s assume in the newsvendor game that the two
competing firms stock inventory at a warehouse. Further, the amount
of space available to each company is a function of the total warehouse
capacity C, e.g., gi (Qi) ≤ C. We can construct a new game where each
retailer solves the following problem:

max
Qi∈{gi(Qi)≤C}

ED
h
rimin

³
Di + (Dj −Qj)+ , Qi

´
− ciQi

i
, i = 1, 2.

Introduce two Lagrange multipliers, λi, i = 1, 2 and re-write the objec-
tive functions as

max
Qi,λi

L (Qi,λi, Qj) = ED
h
rimin

³
Di + (Dj −Qj)+ ,Qi

´
− ciQi − λi (gi (Qi)− C)

i
.

The resulting four optimality conditions can be analyzed using the IFT
the same way as has been demonstrated previously.

2.6.2 Supermodular games approach. In some situations,
supermodular games provide a more convenient tool for comparative
statics.

Theorem 11. Consider a collection of supermodular games on Rn

parameterized by a parameter a. Further, suppose ∂2πi/∂xi∂a ≥ 0 for
all i. Then the largest and the smallest equilibria are increasing in a.

Roughly speaking, a sufficient condition for monotone comparative
statics is supermodularity of players’ payoffs in strategies and a para-
meter. Note that, if there are multiple equilibria, we cannot claim
that every equilibrium is monotone in a; rather, a set of all equilibria is
monotone in the sense of Theorem 10. A convenient way to think about
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the last Theorem is through the augmented Hessian:

¯̄̄̄
¯̄̄̄
¯̄̄̄

∂2π1
∂x2

1

∂2π1
∂x1∂x2

... ∂2π1
∂x1∂xn

∂2π1
∂x1∂a

∂2π2
∂x2∂x1

∂2π2
∂x2

2

... ∂2π1
∂x2∂xn

∂2π1
∂x2∂a

... ... ... ... ...
∂2πn

∂xn∂x1

∂2πn
∂xn∂x2

... ∂2πn
∂x2n

∂2πn
∂xn∂a

∂2π1
∂x1∂a

∂2π1
∂x2∂a

... ∂2πn
∂xn∂a

∂2πn
∂a2

¯̄̄̄
¯̄̄̄
¯̄̄̄ .

Roughly, if all off-diagonal elements of this matrix are positive, then
the monotonicity result holds (signs of diagonal elements do not matter
and hence concavity is not required). To apply this result to compet-
ing newsvendors we will analyze sensitivity of equilibrium inventories³
Q∗i ,Q∗j

´
to ri. First, transform the game to strategies (Qi, y) so that

the game is supermodular and find cross-partial derivatives

∂2πi
∂Qi∂ri

= Pr
³
Di + (Dj −Qj)+ > Qi

´
≥ 0,

∂πj
∂y∂ri

= 0 ≥ 0,

so that (Q∗i , y∗) are both increasing in ri or Q∗i is increasing and Q∗j is
decreasing in ri just as we have already established using the IFT.

The simplicity of the argument (once supermodular games are de-
fined) as compared to the machinery required to derive the same result
using the IFT is striking. Such simplicity has attracted much atten-
tion in SCM and has resulted in extensive applications of supermodular
games. Examples include Cachon (2001), Corbett and DeCroix (2001),
Netessine and Shumsky (2001) and Netessine and Rudi (2001b), to name
just a few. There is, however, an important limitation to the use of The-
orem 10: it cannot handle many constraints as IFT can. Namely, the
decision space must be a lattice to apply supermodularity i.e., it must
include its coordinate-wise maximum and minimum. Hence, a constraint
of the form xi ≤ b can be handled but a constraint xi + xj ≤ b cannot
since points (xi, xj) = (b, 0) and (xi, xj) = (0, b) are within the con-
straint but the coordinate-wise maximum of these two points (b, b) is
not. Notice that to avoid dealing with this issue in detail we stated in
the theorems that the strategy space should all be Rn. Since in many
SCM applications there are constraints on the players’ strategies, super-
modularity must be applied with care.
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3. Dynamic games

While many SCM models are static, including all newsvendor-based
models, a significant portion of the SCM literature is devoted to dynamic
models in which decisions are made over time. In most cases the solution
concept for these games is similar to the backwards induction used when
solving dynamic programming problems. There are, however, important
differences as will be clear from the discussion of repeated games. As
with dynamic programming problems, we continue to focus on the games
of complete information, i.e., at each move in the game all players know
the full history of play.

3.1 Sequential moves: Stackelberg equilibrium
concept

The simplest possible dynamic game was introduced by Stackelberg
(1934). In a Stackelberg duopoly model, player 1,the Stackelberg leader,
chooses a strategy first and then player 2, the Stackelberg follower, ob-
serves this decision and makes his own strategy choice. Since in many
SCM models the upstream firm, e.g., the wholesaler, possesses certain
power over the typically smaller downstream firm, e.g., the retailer, the
Stackelberg equilibrium concept has found many applications in SCM
literature. We do not address the issues of who should be the leader
and who should be the follower, leaving those issues to Chapter 11.

To find an equilibrium of a Stackelberg game which often called the
Stackelberg equilibrium we need to solve a dynamic multi-period prob-
lem via backwards induction. We will focus on a two-period problem
for analytical convenience. First, find the solution x∗2(x1) for the second
player as a response to any decision made by the first player:

x∗2(x1) :
∂π2 (x2, x1)

∂x2
= 0.

Next, find the solution for the first player anticipating the response by
the second player:

dπ1 (x1, x
∗
2(x1))

dx1
=

∂π1 (x1, x
∗
2)

∂x1
+

∂π1 (x1, x2)

∂x2

∂x∗2
∂x1

= 0.

Intuitively, the first player chooses the best possible point on the second
player’s best response function. Clearly, the first player can choose a
NE, so the leader is always at least as well off as he would be in NE.
Hence, if a player were allowed to choose between making moves simulta-
neously or being a leader in a game with complete information he would
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always prefer to be the leader. However, if new information is revealed
after the leader makes a play, then it is not always advantageous to be
the leader.

Whether the follower is better off in the Stackelberg or simultaneous
move game depends on the specific problem setting. See Netessine and
Rudi (2001a) for examples of both situations and comparative analysis of
Stackelberg vs NE; see also Wang and Gerchak (2002) for a comparison
between the leader vs follower roles in a decentralized assembly model.
For example, consider the newsvendor game with sequential moves. The
best response function for the second player remains the same as in the
simultaneous move game:

Q∗2(Q1) = F
−1
D2+(D1−Q1)+

µ
r2 − c2
r2

¶
.

For the leader the optimality condition is

dπ1 (Q1, Q
∗
2(Q1))

dQ1
= r1 Pr

³
D1 + (D2 −Q2)+ > Q1

´
− c1

−r1 Pr
³
D1 + (D2 −Q2)+ < Q1,D2 > Q2

´ ∂Q∗2
∂Q1

= 0,

where ∂Q∗2/∂Q1 is the slope of the best response function found in (2.1).
Existence of a Stackelberg equilibrium is easy to demonstrate given the
continuous payoff functions. However, uniqueness may be considerably
harder to demonstrate. A sufficient condition is quasi-concavity of the
leader’s profit function, π1 (x1, x

∗
2(x1)) . In the newsvendor game ex-

ample, this implies the necessity of finding derivatives of the density
function of the demand distribution as is typical for many problems in-
volving uncertainty. In stochastic models this is feasible with certain re-
strictions on the demand distribution. See Lariviere and Porteus (2001)
for an example with a supplier that establishes the wholesale price and
a newsvendor that then chooses an order quantity and Cachon (2003)
for the reverse scenario in which a retailer sets the wholesale price and
buys from a newsvendor supplier. See Netessine and Rudi (2001a) for
a Stackelberg game with a wholesaler choosing a stocking quantity and
the retailer deciding on promotional effort. One can further extend the
Stackelberg equilibrium concept into multiple periods, see Erhun et al.
(2000) and Anand et al. (2002) for examples.
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3.2 Simultaneous moves: repeated and
stochastic games

A different type of dynamic game arises when both players take ac-
tions in multiple periods. Since inventory models used in SCM literature
often involve inventory replenishment decisions that are made over and
over again, multi-period games should be a logical extension of these
inventory models. Two major types of multiple-period games exist:
without and with time dependence.

In the multi-period game without time dependence the exact same
game is played over and over again hence the term repeated games. The
strategy for each player is now a sequence of actions taken in all peri-
ods. Consider one repeated game version of the competing newsvendor
game in which the newsvendor chooses a stocking quantity at the start of
each period, demand is realized and then leftover inventory is salvaged.
In this case, there are no links between successive periods other than
the players’ memory about actions taken in all the previous periods.
Although repeated games have been extensively analyzed in economics
literature, it is awkward in a SCM setting to assume that nothing links
successive games; typically in SCM there is some transfer of inventory
and/or backorders between periods. As a result, repeated games thus
far have not found many applications in the SCM literature. Exceptions
are Debo (1999), Taylor and Plambeck (2003) and Ren et al. (2003) in
which reputational effects are explored as means of supply chain coordi-
nation in place of the formal contracts.

A fascinating feature of repeated games is that the set of equilibria is
much larger than the set of equilibria in a static game and may include
equilibria that are not possible in the static game. At first, one may
assume that the equilibrium of the repeated game would be to play the
same static NE strategy in each period. This is, indeed, an equilibrium
but only one of many. Since in repeated games the players are able to
condition their behavior on the observed actions in the previous periods,
they may employ so-called trigger strategies: the player will choose one
strategy until the opponent changes his play at which point the first
player will change the strategy. This threat of reverting to a different
strategy may even induce players to achieve the best possible outcome,
i.e., the centralized solution, which is called an implicit collusion. Many
such threats are, however, non-credible in the sense that once a part of
the game has been played, such a strategy is not an equilibrium anymore
for the remainder of the game, as is the case in our example in Figure
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2.1. To separate out credible threats from non-credible, Selten (1965)
introduced the notion of a subgame-perfect equilibrium. See Hall and
Porteus (2000) and van Mieghem and Dada (1999) for solutions involv-
ing subgame-perfect equilibria in dynamic games.

Subgame-perfect equilibria reduce the equilibrium set somewhat. How-
ever, infinitely-repeated games are still particularly troublesome in terms
of multiplicity of equilibria. The famous Folk theorem6 proves that any
convex combination of the feasible payoffs is attainable in the infinitely
repeated game as an equilibrium, implying that “virtually anything” is
an equilibrium outcome 7. See Debo (1999) for the analysis of a re-
peated game between the wholesaler setting the wholesale price and the
newsvendor setting the stocking quantity.

In time-dependent multi-period games players’ payoffs in each period
depend on the actions in the previous as well as current periods. Typ-
ically the payoff structure does not change from period to period (so
called stationary payoffs). Clearly, such setup closely resembles multi-
period inventory models in which time periods are connected through
the transfer of inventories and backlogs. Due to this similarity, time-
dependent games have found applications in SCM literature. We will
only discuss one type of time-dependent multi-period games, stochastic
games or Markov games, due to their wide applicability in SCM. See
also Majumder and Groenevelt (2001b) for the analysis of deterministic
time-dependent multi-period games in reverse logistics supply chains.
Stochastic games were developed by Shapley (1953a) and later by Sobel
(1971), Kirman and Sobel (1974) and Heyman and Sobel (1984). The
theory of stochastic games is also extensively covered in Filar and Vrieze
(1996).

The setup of the stochastic game is essentially a combination of a
static game and a Markov Decisions Process: in addition to the set of
players with strategies which is now a vector of strategies, one for each
period, and payoffs, we have a set of states and a transition mechanism
p(s0|s, x), probability that we transition from state s to state s0 given
action x. Transition probabilities are typically defined through random
demand occurring in each period. The difficulties inherent in considering
non-stationary inventory models are passed over to the game-theoretic
extensions of these models, so a standard simplifying assumption is that
demands are independent and identical across periods. When only a sin-
gle decision-maker is involved, such an assumption leads to a unique sta-
tionary solution (e.g., stationary inventory policy of some form: order-
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up-to, S-s, etc.). In a GT setting, however, things get more complicated;
just as in the repeated games described above, non-stationary equilibria,
e.g., trigger strategies, are possible. A standard approach is to consider
just one class of equilibria — e.g., stationary — since non-stationary poli-
cies are hard to implement in practice and they are not always intuitively
appealing. Hence, with the assumption that the policy is stationary the
stochastic game reduces to an equivalent static game and equilibrium
is found as a sequence of NE in an appropriately modified single-period
game. Another approach is to focus on “Markov” or “state-space” strate-
gies in which the past influences the future through the state variables
but not through the history of the play. A related equilibrium concept
is that of Markov Perfect Equilibrium (MPE) which is simply a profile
of Markov strategies that yields a Nash equilibrium in every subgame.
The concept of MPE is discussed in Chapter 13 of Fudenberg and Ti-
role (1991). See also Tayur and Yang (2002) for the application of this
concept.

To illustrate, consider an infinite-horizon variant of the newsvendor
game with lost sales in each period and inventory carry-over to the sub-
sequent period, see Netessine et al. 2002 for complete analysis. The
solution to this problem in a non-competitive setting is an order-up-to
policy. In addition to unit-revenue r and unit-cost c we introduce inven-
tory holding cost h incurred by a unit carried over to the next period
and a discount factor β. Also denote by xti the inventory position at the
beginning of the period and by yti the order-up-to quantity. Then the
infinite-horizon profit of each player is

πi
³
x1
´
= E

∞X
t=1

βt−1i

·
rimin

µ
yti ,D

t
i +

³
Dtj − ytj

´+¶

−hi
µ
yti −Dti −

³
Dtj − ytj

´+¶+ − ciQti
#
,

with the inventory transition equation

xt+1i =

µ
yti −Dti −

³
Dtj − ytj

´+¶+
.

Using the standard manipulations from Heyman and Sobel (1984), this
objective function can be converted to

πi
³
x1
´
= cix

1
i +

∞X
t=1

βt−1i Gti

³
yti

´
, i = 1, 2,
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where Gti
¡
yti
¢
is a single-period objective function

Gti(y
t
i) = E

·
(ri − ci)

µ
Dti +

³
Dtj − ytj

´+¶
− (ri − ci)

µ
Dti +

³
Dtj − ytj

´+ − yti¶+
− (hi + ci(1− βi))

µ
yti −Dti −

³
Dtj − ytj

´+¶+#
, i = 1, 2, t = 1, 2, ...

Assuming demand is stationary and independently distributed across
periods Di = D

t
i we further obtain that G

t
i(y

t
i) = Gi(y

t
i) since the single-

period game is the same in each period. By restricting consideration
to the stationary inventory policy yi = yti , t = 1, 2, ..., we can find the
solution to the multi-period game as a sequence of the solutions to a
single-period game Gi(yi) which is

y∗i = F
−1
Di+(Dj−y∗j )

+

µ
ri − ci

ri + hi − ciβi
¶
, i = 1, 2.

With the assumption that the equilibrium is stationary, one could argue
that stochastic games are no different from static games; except for a
small change in the right-hand side reflecting inventory carry-over and
holding costs, the solution is essentially the same. However, more elab-
orate models capture some effects that are not present in static games
but can be envisioned in stochastic games. For example, if we were to
introduce backlogging in the above model, a couple of interesting situa-
tions would arise: a customer may backlog the product with either the
first or with the second competitor he visits if both are out of stock.
These options introduce the behavior that is observed in practice but
cannot be modeled within the static game (see Netessine at al. 2002 for
detailed analysis) since firms’ inventory decisions affect their demand
in the future. Among other applications of stochastic games are pa-
pers by Cachon and Zipkin (1999) analyzing a two-echelon game with
the wholesaler and the retailer making stocking decisions, Bernstein and
Federgruen (2002) analyzing price and service competition, Netessine
and Rudi (2001a) analyzing the game with the retailer exerting sales
effort and the wholesaler stocking the inventory and van Mieghem and
Dada (1999) studying a two-period game with capacity choice in the
first period and production decision under the capacity constraint in the
second period.
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3.3 Differential games

So far we have described dynamic games in discrete time, i.e., games
involving a sequence of decisions that are separated in time. Differ-
ential games provide a natural extension for decisions that have to be
made continuously. Since many SC models rely on continuous-time
processes, it is natural to assume that differential games should find a
variety of applications in SCM literature. However, most SCM models
include stochasticity in one form or another. At the same time, due to
the mathematical difficulties inherent in differential games, we are only
aware of deterministic differential GT models in SCM. Although theory
for stochastic differential games does exist, applications are quite limited,
see Basar and Olsder (1995). Marketing and economics have been far
more successful in applying differential games since deterministic models
are standard in these areas. Hence, we will only briefly outline some
new concepts necessary to understand the theory of differential games.

The following is a simple example of a differential game taken from
Kamien and Schwartz (2000). Suppose two players indexed by i = 1, 2
are engaged into production and sales of the same product. Firms
choose production levels ui(t) at any moment of time and incur total cost
Ci(ui) = cui+u

2
i /2. The price in the market is determined as per Cournot

competition. Typically, this would mean that p(t) = a − u1(t) − u2(t).
However, the twist in this problem is that if the production level is
changed, price adjustments are not instantaneous. Namely, there is a
parameter s, referred to as the speed of price adjustment, so that the
price is adjusted according to the following differential equation:

p0(t) = s [a− u1(t)− u2(t)− p(t)] , p(0) = p0.
Finally, each firm maximizes

πi =

Z ∞
0
e−rt (p(t)ui(t)−Ci(ui(t))) dt, i = 1, 2.

The standard tools needed to analyze differential games are the cal-
culus of variations or optimal control theory, see Kamien and Schwartz
(2000). In a standard optimal control problem a single decision-maker
sets the control variable that affects the state of the system. In con-
trast, in differential games several players select control variables that
may affect a common state variable and/or payoffs of all players. Hence,
differential games can be looked at as a natural extension of the opti-
mal control theory. In this section we will consider two distinct types
of player strategies: open-loop and closed-loop which is also sometimes
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called feedback. In the open-loop strategy the players select their deci-
sions or control variables once at the beginning of the game and do not
change them so that the control variables are only functions of time and
do not depend on the other players’ strategies. Open-loop strategies are
simpler in that they can be found through the straightforward applica-
tion of optimal control which makes them quite popular. Unfortunately,
an open-loop strategy may not be subgame-perfect. On the contrary,
in a closed-loop strategy the player bases his strategy on current time
and the states of both players’ systems. Hence, feedback strategies are
subgame-perfect: if the game is stopped at any time, for the remain-
der of the game the same feedback strategy will be optimal, which is
consistent with the solution to the dynamic programming problems that
we employed in the stochastic games section. The concept of a feed-
back strategy is more satisfying, but is also more difficult to analyze. In
general, optimal open-loop and feedback strategies differ, but they may
coincide in some games.

Since it is hard to apply differential game theory in stochastic prob-
lems, we cannot utilize the competitive newsvendor problem to illustrate
the analysis. Moreover, the analysis of even the most trivial differential
game is somewhat involved mathematically so we will limit our survey to
stating and contrasting optimality conditions in the cases of open-loop
and closed-loop NE. Stackelberg equilibrium models do exist in differ-
ential games as well but are rarer, see Basar and Olsder (1995). Due to
mathematical complexity, games with more than two players are hardly
ever analyzed. In a differential game with two players, each player is en-
dowed with a control ui(t) that the player uses to maximize the objective
function πi

max
ui(t)

πi(ui, uj) = max
ui(t)

Z T

0
fi (t, xi(t), xj(t), ui(t), uj(t)) dt,

where xi(t) is a state variable describing the state of the system. The
state of the system evolves according to the differential equation

x0i(t) = gi (t, xi(t), xj(t), ui(t), uj(t)) ,

which is the analog of the inventory transition equation in the multi-
period newsvendor problem. Finally, there are initial conditions xi(0) =
xi0.

The open-loop strategy implies that each players’ control is only a
function of time, ui = ui(t). A feedback strategy implies that each play-
ers’ control is also a function of state variables, ui = ui(t, xi(t), xj(t)).
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As in the static games, NE is obtained as a fixed point of the best
response mapping by simultaneously solving a system of first-order opti-
mality conditions for the players. Recall that to find the optimal control
we first need to form a Hamiltonian. If we were to solve two individ-
ual non-competitive optimization problems, the Hamiltonians would be
Hi = fi + λigi, i = 1, 2, where λi(t) is an adjoint multiplier. However,
with two players we also have to account for the state variable of the
opponent so that the Hamiltonian becomes

Hi = fi + λ1i gi + λ2i gj , i, j = 1, 2.

To obtain the necessary conditions for the open-loop NE we simply use
the standard necessary conditions for any optimal control problem:

∂H1
∂u1

= 0,
∂H2
∂u2

= 0, (2.9)

∂λ11
∂t

= −∂H1
∂x1

,
∂λ21
∂t

= −∂H1
∂x2

, (2.10)

∂λ12
∂t

= −∂H2
∂x2

,
∂λ22
∂t

= −∂H2
∂x1

. (2.11)

For the feedback equilibrium the Hamiltonian is the same as for the
open-loop strategy. However, the necessary conditions are somewhat
different:

∂H1
∂u1

= 0,
∂H2
∂u2

= 0, (2.12)

∂λ11
∂t

= −∂H1
∂x1

− ∂H1
∂u2

∂u∗2
∂x1

,
∂λ21
∂t

= −∂H1
∂x2

− ∂H1
∂u2

∂u∗2
∂x2

, (2.13)

∂λ12
∂t

= −∂H2
∂x2

− ∂H2
∂u1

∂u∗1
∂x2

,
∂λ22
∂t

= −∂H2
∂x1

− ∂H2
∂u1

∂u∗1
∂x1

. (2.14)

Notice that the difference is captured by an extra term on the right when
we compare (2.10) and (2.13) or (2.11) and (2.14). The difference is due
to the fact that the optimal control of each player under the feedback
strategy depends on xi(t), i = 1, 2. Hence, when differentiating the
Hamiltonian to obtain equations (2.13) and (2.14) we have to account
for such dependence (note also that two terms disappear when we use
(2.12) to simplify).

As we mentioned earlier, there are numerous applications of differen-
tial games in economics and marketing, especially in the area of dynamic
pricing, see, e.g., Eliashberg and Jeuland (1986). Eliashberg and Stein-
berg (1987), Desai (1992) and Desai (1996) use the open-loop Stackelberg
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equilibrium concept in a marketing-production game with the manufac-
turer and the distributor. Gaimon (1989) uses both open and closed-
loop NE concepts in a game with two competing firms choosing prices
and production capacity when the new technology reduces firms’ costs.
Mukhopadhyay and Kouvelis (1997) consider a duopoly with firms com-
peting on prices and quality of design and derive open and closed-loop
NE.

4. Cooperative games

The subject of cooperative games first appeared in the seminal work
of von Neumann and Morgenstern (1944). However, for a long time co-
operative game theory did not enjoy as much attention in the economics
literature as non-cooperative GT. Papers employing cooperative GT to
study SCM had been scarce, but are becoming more popular. This trend
is probably due to the prevalence of bargaining and negotiations in SC
relationships.

Cooperative GT involves a major shift in paradigms as compared to
non-cooperative GT: the former focuses on the outcome of the game in
terms of the value created through cooperation of a subset of players but
does not specify the actions that each player will take, while the latter
is more concerned with the specific actions of the players. Hence, coop-
erative GT allows us to model outcomes of complex business processes
that otherwise might be too difficult to describe, e.g., negotiations, and
answers more general questions, e.g., how well is the firm positioned
against competition (see Brandenburger and Stuart 1996). However,
there are also limitations to cooperative GT, as we will later discuss.
In what follows, we will cover transferable utility cooperative games

(players can share utility via side payments) and two solution concepts:
the core of the game and the Shapley value, and also biform games that
have found several applications in SCM. Not covered are alternative
concepts of value, e.g., nucleous and the σ-value, and games with non-
transferable utility that have not yet found application in SCM. Material
in this section is based mainly on Stuart (2001) and Moulin (1995).
Perhaps the first paper employing cooperative games in SCM is Wang
and Parlar (1994) who analyze the newsvendor game with three players,
first in a non-cooperative setting and then under cooperation with and
without Transferable Utility.
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4.1 Games in characteristic form and the core of
the game

Recall that the non-cooperative game consists of a set of players with
their strategies and payoff functions. In contrast, the cooperative game,
which is also called the game in characteristic form, consists of the set
of players N with subsets or coalitions S ⊆ N and a characteristic func-
tion v(S) that specifies a (maximum) value (which we assume is a real
number) created by any subset of players in N, i.e., the total pie that
members of a coalition can create and divide. The specific actions that
players have to take to create this value are not specified: the character-
istic function only defines the total value that can be created by utilizing
all players’ resources. Hence, players are free to form any coalitions that
are beneficial to them and no player is endowed with power of any sort.
Furthermore, the value a coalition creates is independent of the coali-
tions and actions taken by the non-coalition members. This decoupling
of payoffs is natural in political settings (e.g., the majority gets to choose
the legislation), but it far more problematic in competitive markets. For
example, in the context of cooperative game theory, the value HP and
Compaq can generate by merging is independent of the actions taken by
Dell, Gateway, IBM, Ingram Micron, etc.8

A frequently used solution concept in cooperative GT is the core of
the game:

Definition 5: The utility vector π1, ...,πN is in the core of the coop-
erative game if ∀S ⊂ N, Pi∈S πi ≥ v(S) and

P
i∈N πi ≥ v(N)

A utility vector is in the core if the total utility of every possible coali-
tion is at least as large as the coalition’s value, i.e., there does not exist
a coalition of players that could make all of its members at least as well
off and one member strictly better off.

As is true for NE, the core of the game may not exist, i.e., it may
be empty, and the core is often not unique. Existence of the core is
an important issue because with an empty core it is difficult to predict
what coalitions would form and what value each player would receive. If
the core exists, then the core typically specifies a range of utilities that a
player can appropriate, i.e., competition alone does not fully determine
the players’ payoffs. What utility each player will actually receives is
undetermined: it may depend on the details of the residual bargaining
process, a source of criticism of the core concept. (Biform games, de-
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scribed below, provide one possible resolution of this indeterminacy.)

In terms of specific applications to the SCM, Hartman et al. (2000)
considered the newsvendor centralization game, i.e., a game in which
multiple retailers decide to centralize their inventory and split profits
resulting from the benefits of risk pooling. Hartman at al. (2000) further
show that this game has a non-empty core under certain restrictions on
the demand distribution. Muller et al. (2002) relax these restrictions
and show that the core is always non-empty. Further, Muller et al.
(2002) give a condition under which the core is a singleton.

4.2 Shapley value

The concept of the core, though intuitively appealing, also possesses
some unsatisfying properties. As we mentioned, the core might be
empty or indeterministic9. As it is desirable to have a unique NE in
non-cooperative games, it is desirable to have a solution concept for co-
operative games that results in a unique outcome. Shapley (1953b)
offered an axiomatic approach to a solution concept that is based on
three axioms. First, the value of a player should not change due to
permutations of players, i.e., only the role of the player matters and not
names or indices assigned to players. Second, if a player’s added value
to the coalition is zero then this player should not get any profit from the
coalition, or, in other words, only players generating added value should
share the benefits. (A player’s added value is the difference between the
coalitions value with that player and without that player.) Those ax-
ioms are intuitive, but the third is far less so. The third axiom requires
additivity of payoffs: if v1 and v2 are characteristic functions in any two
games, and if q1 and q2 are a player’s Shapely value in these two games,
then the player’s Shapely value in the composite game, v1+ v2, must be
q1 + q2. This is not intuitive because it is not clear by what is meant
by a composite game. Nevertheless, Shapley (1953b) demonstrates that
there is a unique value for each player, called the Shapley value, that
satisfies all three axioms.

Theorem 11. The Shapley value, πi, for player i in an N−person
non-cooperative game with transferable utility is :

πi =
X

S⊆N\i

|S|! (|N |− |S|− 1)!
|N |! (v (S ∪ {i})− v(S)) .

The Shapley value assigns to each player his marginal contribution (v(S ∪ {i}− v(S))
when S is a random coalition of agents preceding i and the ordering is
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drawn at random. To explain further, (see Myerson 1997), suppose
players are picked randomly to enter into a coalition. There are |N |!
different orderings for all players, and for any set S that does not contain
player i there are |S|! (|N |− |S|− 1)! ways to order players so that all of
the players in S are picked ahead of player i. If the orderings are equally
likely, there is a probability of |S|! (|N |− |S|− 1)!/ |N |! that when player
i is picked he will find S players in the coalition already. The marginal
contribution of adding player i to coalition S is (v (S ∪ {i})− v(S)) .
Hence, the Shapley value is nothing more than a marginal expected
contribution of adding player i to the coalition.
Because the Shapley value is unique, it has found numerous applica-

tions in economics and political sciences. So far, however, SCM appli-
cations are scarce: except for discussion in Granot and Sosic (2001) we
are not aware of any other papers employing the concept of the Shapley
value. Although uniqueness of the Shapely value is a convenient feature,
caution should surely be taken with Shapley value: the Shapley value
need not be in the core, hence, although the Shapely is appealing from
the perspective of fairness, it may not be a reasonable prediction of the
outcome of a game (i.e., because it is not in the core, there exists some
subset of players that can deviate and improve their lots).

4.3 Biform games

From the SCM point of view, cooperative games are somewhat unsat-
isfactory in that they do not explicitly describe the equilibrium actions
taken by the players that is often the key in SC models. Biform games,
developed by Brandenburger and Stuart (2003), compensate to some
extent for this shortcoming.
A biform game can be thought of as a non-cooperative game with

cooperative games as outcomes and those cooperative games lead to
specific payoffs. Similar to the non-cooperative game, the biform game
has a set of players N, a set of strategies for each player and also a
cost function associated with each strategy (cost function is optional —
we include it since most SCM applications of biform games involve cost
functions). The game begins by players making choices from among
their strategies and incurring costs. After that, a cooperative game
occurs in which the characteristic value function depends on the chosen
actions. Hopefully the core of each possible cooperative game is non-
empty, but it is also unlikely to be unique. As a result, there is not
specific outcome of the cooperative sub-game, i.e., it is not immediately
clear what value each player can expect. The proposed solution is that
each player is assigned a confidence index, αi ∈ [0, 1], and the αis are
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common knowledge. Each player then expects to earn in each possible
cooperative game a weighted average of the minimum and maximum
values in the core, with αi being the weight. For example, if αi = 0,
then the player earns the minimum value in the core and if αi = 1
then the player earns the maximum value in the core. Once a specific
value is assigned to each player for each cooperative sub-game, the first
stage non-cooperative game can be analyzed just like any other non-
cooperative game.
Biform games have been successfully adopted in several SCM papers.

Anupindi et al. (2001) consider a game where multiple retailers stock
at their own locations as well as at several centralized warehouses. In
the first (non-cooperative) stage retailers make stocking decisions. In
the second (cooperative) stage retailers observe demand and decide how
much inventory to transship among locations to better match supply
and demand and how to appropriate the resulting additional profits.
Anupindi et al. (2001) conjecture that a characteristic form of this game
has an empty core. However, the biform game has a non-empty core
and they find the allocation of rents based on dual prices that is in the
core. Moreover, they find an allocation mechanism that is in the core
and that allows them to achieve coordination, i.e., the first-best solution.
Granot and Sosic (2001) analyze a similar problem but allow retailers
to hold back the residual inventory. In their model there are actually
three stages: inventory procurement, decision about how much inventory
to share with others and finally the transshipment stage. Plambeck and
Taylor (2001a, 2001b) analyze two similar games between two firms that
have an option of pooling their capacity and investments to maximize
the total value. In the first stage, firms choose investment into effort
that affects the market size. In the second stage, firms bargain over the
division of the market and profits.

5. Signaling, Screening and Bayesian Games

So far we have considered only games in which the players are on
“equal footing” with respect to information, i.e., each player knows every
other player’s expected payoff with certainty for any set of chosen ac-
tions. However, such ubiquitous knowledge is rarely present in supply
chains. One firm may have a better forecast of demand than another
firm, or a firm may possess superior information regarding its own costs
and operating procedures. Furthermore, a firm may know that another
firm may have better information, and therefore choose actions that
acknowledge this information shortcoming. Fortunately, game theory
provides tools to study these rich issues, but, unfortunately, they do add
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another layer of analytical complexity. This section briefly describes
three types of games in which the information structure has a strategic
role: signaling games, screening games and Bayesian games. Detailed
methods for the analysis of these games are not provided. Instead, a
general description is provided along with specific references to supply
chain management papers that study these games.

5.1 Signaling Game

In its simplest form, a signaling game has two players, one of which
has better information than the other and it is the player with the better
information that makes the first move. For example, Cachon and Lar-
iviere (2001) consider a model with one supplier and one manufacturer.
The supplier must build capacity for a key component to the manufac-
turer’s product, but the manufacturer has a better demand forecast than
the supplier. In an ideal world the manufacturer would truthfully share
her demand forecast with the supplier so that the supplier could build
the appropriate amount of capacity. However, the manufacturer always
benefits from a larger installed capacity in case demand turns out to be
high but it is the supplier that bears the cost of that capacity. Hence,
the manufacturer has an incentive to inflate her forecast to the supplier.
The manufacturer’s hope is that the supplier actually believes the rosy
forecast and builds additional capacity. Unfortunately, the supplier is
aware of this incentive to distort the forecast, and therefore should view
the manufacturer’s forecast with skepticism. The key issue is whether
there is something the manufacturer should do to make her forecast con-
vincing, i.e., credible.

While the reader should refer to Cachon and Lariviere (2001) for the
details of the game, some definitions and concepts are needed to con-
tinue this discussion. The manufacturer’s private information, or type,
is her demand forecast. There is a set of possible types that the manu-
facturer could be and this set is known to the supplier, i.e., the supplier
is aware of the possible forecasts, but is not aware of the manufacturer’s
actual forecast. Furthermore, at the start of the game the supplier
and the manufacturer know the probability distribution over the set of
types. We refer to this probability distribution as the supplier’s belief
regarding the types. The manufacturer chooses her action first which
in this case is a contract offer and a forecast, the supplier updates his
belief regarding the manufacturer’s type given the observed action, and
then the supplier chooses his action which in this case is the amount of
capacity to build. If the supplier’s belief regarding the manufacturer’s
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type is resolved to a single type after observing the manufacturer’s ac-
tion (i.e., the supplier assigns a 100% probability that the manufacturer
is that type and a zero probability that the manufacturer is any other
type) then the manufacturer has signaled a type to the supplier. The
trick for the supplier is to ensure that the manufacturer has signaled her
actual type.

While we are mainly interested in the set of contracts that credibly
signal the manufacturer’s type, it is worth beginning with the possibil-
ity that the manufacturer does not signal her type. In other words, the
manufacturer chooses an action such that the action does not provide
the supplier with additional information regarding the manufacturer’s
type. That outcome is called a pooling equilibrium, because the differ-
ent manufacturer types behave in the same way, i.e., the different types
are pooled into the same set of actions. As a result, Bayes’ rule does not
allow the supplier to refine his beliefs regarding the manufacturer’s type.

A pooling equilibrium is not desirable from the perspective of supply
chain efficiency because the manufacturer’s type is not communicated to
the supplier. Hence, the supplier does not choose the correct capacity
given the manufacturer’s actual demand forecast. However, this does
not mean that both firms are disappointed with a pooling equilibrium.
If the manufacturer’s demand forecast is worse than average, then that
manufacturer is quite happy with the pooling equilibrium because the
supplier is likely to build more capacity than he would if he learned the
manufacturer’s true type. It is the manufacturer with a higher than av-
erage demand forecast that is disappointed with the pooling equilibrium
because then the supplier is likely to underinvest in capacity.

A pooling equilibrium is often supported by the belief that every type
will play the pooling equilibrium and any deviation from that play would
only be done by a manufacturer with a low demand forecast. This be-
lief can prevent the high demand manufacturer from deviating from the
pooling equilibrium: a manufacturer with a high demand forecast would
rather be treated as an average demand manufacturer (the pooling equi-
librium) than a low demand manufacturer (if deviating from the pooling
equilibrium). Hence, a pooling equilibrium can indeed be a NE in the
sense that no player has a unilateral incentive to deviate given the strate-
gies and beliefs chosen by the other players.

While a pooling equilibrium can meet the criteria of a NE, it never-
theless may not be satisfying. In particular, why should the supplier
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believe that the manufacturer is a low type if the manufacturer deviates
from the pooling equilibrium? Suppose the supplier were to believe
a deviating manufacturer has a high demand forecast. If a high type
manufacturer is better off deviating but a low type manufacturer is not
better off, then only the high type manufacturer would choose such a de-
viation. The key part in this condition is that the low type is not better
off deviating. In that case it is not reasonable for the supplier to believe
the deviating manufacturer could only be a high type, so the supplier
should adjust his belief. Furthermore, the high demand manufacturer
should then deviate from the pooling equilibrium, i.e., this reasoning,
which is called the intuitive criterion, breaks the pooling equilibrium,
see Kreps (1990).

The contrast to a pooling equilibrium is a separating equilibrium which
is also called a signaling equilibrium. With a separating equilibrium the
different manufacturer types choose different actions, so the supplier is
able to perfectly refine his belief regarding the manufacturer’s type given
the observed action. The key condition for a separating equilibrium is
that only one manufacturer type is willing to choose the action desig-
nated for that type. If there is a continuum of manufacturer types, then
it is quite challenging to obtain a separating equilibrium: it is difficult to
separate two manufacturers that have nearly identical types. However,
separating equilibria are more likely to exist if there is a finite number
of discrete types.

There are two main issues with respect to separating equilibria: what
actions lead to separating equilibrium and does the manufacturer incur
a cost to signal, i.e., is the manufacturer’s expected profit in the separat-
ing equilibrium lower than what it would be if the manufacturer’s type
were known to the supplier with certainty? In fact, these two issues
are related: an ideal action for a high demand manufacturer is one that
costlessly signals her high demand forecast. If a costless signal does not
exist, then the goal is to seek the lowest cost signal.

Cachon and Lariviere (2001) demonstrate that whether a costless sig-
nal exists depends upon what commitments the manufacturer can im-
pose on the supplier. For example, suppose the manufacturer dictates
to the supplier a particular capacity level in the manufacturer’s contract
offer. Furthermore, suppose the supplier accepts that contract and by
accepting the contract the supplier has essentially no choice but to build
that level of capacity since the penalty for noncompliance is too severe.
They refer to this regime as forced compliance. In that case there exist
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many costless signals for the manufacturer. However, if the manufac-
turer’s contract is not iron-clad, so the supplier could potentially deviate,
which is referred to as voluntary compliance, then the manufacturer’s
signaling task becomes more complex.

One solution for a high demand manufacturer is to give a sufficiently
large lump sum payment to the supplier: the high demand manufac-
turer’s profit is higher than the low demand manufacturer’s profit, so
only a high demand manufacturer could offer that sum. This has been
referred to as signaling by “burning money”: only a firm with a lot of
money can afford to burn that much money.

While burning money can work, it is not a smart signal: burning
one unit of income hurts the high demand manufacturer as much as it
hurts the low demand manufacturer. The signal works only because
the high demand manufacturer has more units to burn. A better signal
is a contract offer that is costless to a high demand manufacturer but
expensive to a low demand manufacturer. A good example of such a
signal is a minimum commitment. A minimum commitment is costly
only if realized demand is lower than the commitment, because then the
manufacturer is forced to purchase more units than desired. That cost is
less likely for a high demand manufacturer, so in expectation a minimum
commitment is costlier for a low demand manufacturer. Interestingly,
Cachon and Lariviere (2001) show that a manufacturer would never offer
a minimum commitment with perfect information, i.e., these contracts
may be used in practice solely for the purpose of signaling information.

5.2 Screening

In a screening game the player that lacks information is the first to
move. For example, in the screening game version of the supplier-
manufacturer game described by Cachon and Lariviere (2001) the sup-
plier makes the contract offer. In fact, the supplier offers a menu of
contracts with the intention of getting the manufacturer to reveal her
type via the contract selected in the menu. In the economics literature
this is also referred to as mechanism design, because the supplier is in
charge of designing a mechanism to learn the manufacturer’s informa-
tion. See Porteus and Whang (1999) for a screening game that closely
resembles this one.

The space of potential contract menus is quite large, so large that
it is not immediately obvious how to begin to find the supplier’s opti-
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mal menu. For example, how many contracts should be offered and
what form should they take? Furthermore, for any given menu the sup-
plier needs to infer for each manufacturer type which contract the type
will choose. Fortunately, the revelation principle (Kreps 1990) provides
some guidance.

The revelation principle begins with the presumption that a set of
optimal mechanisms exists. Associated with each of these mechanisms
is a NE that specifies which contract each manufacturer type chooses
and the supplier’s action given the chosen contract. With some of these
equilibria it is possible that some manufacturer type chooses a contract
that is not designated for that type. For example, the supplier in-
tends the low demand manufacturer to choose one of the menu options,
but instead the high demand manufacturer chooses that option. Even
though this does not seem desirable, it is possible that this mechanism is
still optimal in the sense that the supplier can do no better on average.
The supplier ultimately cares only about expected profit, not the means
by which that profit is achieved. Nevertheless, the revelation principle
states that an optimal mechanism that involves deception (the wrong
manufacturer chooses a contract) can be replaced by a mechanism that
does not involve deception, i.e., there exists an equivalent mechanism
that is truth-telling. Hence, in the hunt for an optimal mechanism it
is sufficient to consider the set of revealing mechanisms: the menu of
contracts is constructed such that each option is designated for a type
and that type chooses that option.

Even though an optimal mechanism may exist for the supplier, this
does not mean the supplier earns as much profit as he would if he knew
the manufacturer’s type. The gap between what a manufacturer earns
with the menu of contracts and what the same manufacturer would earn
if the supplier knew her type is called an information rent. A feature
of these mechanisms is that separation of the manufacturer types goes
hand in hand with a positive information rent, i.e., a manufacturer’s
private information allows the manufacturer to keep some rent that the
manufacturer would not be able to keep if the supplier knew her type.
Hence, even though there may be no cost to information revelation with
a signaling game, the same is not true with a screening game.

There have been a number of applications of the revelation principle
in the supply chain literature: e.g., Chen (2001) studies auction design
in the context of supplier procurement contracts; Corbett (2001) studies
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inventory contract design; Baiman et al. (2003) study procurement of
quality in a supply chain.

5.3 Bayesian games

With a signaling game or a screening game actions occur sequentially
so information can be revealed through the observation of actions. There
also exist games with private information that do not involve signaling
or screening. Consider the capacity allocation game studied by Cachon
and Lariviere (1999). A single supplier has a finite amount of capacity.
There are multiple retailers, and each knows his own demand but not
the demand of the other retailers. The supplier announces an allocation
rule, the retailers submit their orders and then the supplier produces and
allocates units. If the retailers’ total order is less than capacity, then
each retailer receives his entire order. If the retailers’ total order ex-
ceeds capacity, the supplier’s allocation rule is implemented to allocate
the capacity. The issue is the extent to which the supplier’s allocation
rule influences the supplier’s profit, the retailer’s profit and the supply
chain’s profit.

In this setting the firms that have the private information (the retail-
ers) choose their actions simultaneously. Therefore, there is no infor-
mation exchange among the firms. Even the supplier’s capacity is fixed
before the game starts, so the supplier is unable to use any information
learned from the retailers’ orders to choose a capacity. However, it is
possible that correlation exists in the retailers’ demand information, i.e.,
if a retailer observes his demand type to be high, then he might assess
the other retailers’ demand type to be high as well (if there is a pos-
itive correlation). Roughly speaking, in a Bayesian game each player
uses Bayes’ rule to update his belief regarding the types of the other
players. An equilibrium is then a set of strategies for each type that is
optimal given the updated beliefs with that type and the actions of all
other types. See Fudenberg and Tirole (1991) for more information on
Bayesian games.

6. Summary and Opportunities

As has been noted in other reviews, Operations Management has been
slow to adopt GT. But because SCM is an ideal candidate for GT appli-
cations, we have recently witnessed an explosion of GT papers in SCM.
As our survey indicates, most of these papers utilize only a few GT con-
cepts, in particular the concepts related to non-cooperative static games.
Some attention has been given to stochastic games but several other im-



Game Theory in Supply Chain Analysis 47

portant areas need additional work: cooperative, repeated, differential,
signaling, screening and Bayesian games.

The relative lack of GT applications in SCM can be partially at-
tributed to the absence of GT courses from the curriculum of most doc-
toral programs in operations research/management. One of our hopes
with this survey is to spur some interest in GT tools by demonstrating
that they are intuitive and easy to apply for a person with traditional
operations research training.

With the invention of the Internet, certain GT tools have received
significant attention: web auctions gave a boost to auction theory, and
numerous web sites offer an opportunity to haggle, thus making bar-
gaining theory fashionable. In addition, the advent of relatively cheap
information technology has reduced transaction costs and enabled a level
of disintermediation that could not be achieved before. Hence, it can
only become more important to understand the interactions among in-
dependent agents within and across firms. While the application of
game theory to supply chain management is still in its infancy, much
more progress will soon come.

Notes

1. This is an invited chapter for the book “Supply Chain Analysis in the eBusiness Era”
edited by David Simchi-Levi, S. David Wu and Zuo-Jun (Max) Shen, to be published by
Kluwer. http://www.ise.ufl.edu/shen/handbook/. Helpful comments from Gus Stuart and
an anonymous referee are gratefully acknowledged.

2. Some may argue that GT should be a tool for choosing how a manager should play
a game, which may involve playing against rational or semi-rational players. In some sense
there is no conflict between these descriptive and normative roles for GT, but this philosoph-
ical issue surely requires more in-depth treatment than can be afforded here.

3. However, an argument can also be made that to predict rational behavior by players
it is sufficient that players not choose dominated strategies, where a dominated strategy is
one that yields a lower payoff than some other strategy (or convex combination of other
strategies) for all possible strategy choices by the other players.

4. Strategy space is compact if it is closed and bounded.

5. Interior equilibrium is the one in which first-order conditions hold for each player. The
alternative is boundary equilibrium in which at least one of the players select the strategy
on the boundary of his strategy space.

6. The name is due to the fact that its source is unknown and dates back to 1960;
Friedman (1986) was one of the first to treat Folk Theorem in detail.

7. A condition needed to insure attainability of an equilibrium solution is that the dis-
count factor is large enough. The discount factor also affects effectiveness of trigger and many
other strategies.

8. One interpretation of the value function is that it is the minimum value a coalition
can guarantee for itself assuming the other players take actions that are most damaging to
the coalition. But that can be criticized as overly conservative.
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9. Another potential problem is that the core might be very large. However, as Branden-
burger and Stuart (2003) point out, this may happen for a good reason: to interprete such
situations, one can think of competition as not having much force in the game, hence the
division of value will largely depend on the intangibles involved.
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